Insights on forming N,O-coordinated Cu single-atom catalysts for electrochemical reduction CO2 to methane

被引:416
作者
Cai, Yanming [1 ]
Fu, Jiaju [1 ]
Zhou, Yang [2 ]
Chang, Yu-Chung [2 ]
Min, Qianhao [1 ]
Zhu, Jun-Jie [1 ]
Lin, Yuehe [2 ]
Zhu, Wenlei [2 ]
机构
[1] Nanjing Univ, Sch Chem & Chem Engn, State Key Lab Analyt Chem Life Sci, Nanjing 210023, Peoples R China
[2] Washington State Univ, Sch Mech & Mat Engn, Pullman, WA 99164 USA
基金
中国国家自然科学基金;
关键词
D O I
10.1038/s41467-020-20769-x
中图分类号
O [数理科学和化学]; P [天文学、地球科学]; Q [生物科学]; N [自然科学总论];
学科分类号
07 ; 0710 ; 09 ;
摘要
Single-atom catalysts (SACs) are promising candidates to catalyze electrochemical CO2 reduction (ECR) due to maximized atomic utilization. However, products are usually limited to CO instead of hydrocarbons or oxygenates due to unfavorable high energy barrier for further electron transfer on synthesized single atom catalytic sites. Here we report a novel partial-carbonization strategy to modify the electronic structures of center atoms on SACs for lowering the overall endothermic energy of key intermediates. A carbon-dots-based SAC margined with unique CuN2O2 sites was synthesized for the first time. The introduction of oxygen ligands brings remarkably high Faradaic efficiency (78%) and selectivity (99% of ECR products) for electrochemical converting CO2 to CH4 with current density of 40mA.cm(-2) in aqueous electrolytes, surpassing most reported SACs which stop at two-electron reduction. Theoretical calculations further revealed that the high selectivity and activity on CuN2O2 active sites are due to the proper elevated CH4 and H-2 energy barrier and fine-tuned electronic structure of Cu active sites. Single-atom catalysts (SACs) are promising candidates to catalyze CO2 reduction for the formation of high value hydrocarbons but most of the reactions yield CO. Here, the authors show a low-temperature calcining process to fabricate a carbon-dots-based SAC to efficiently convert CO2 to methane.
引用
收藏
页数:9
相关论文
共 42 条
[1]   Single-atom catalysts for CO2 electroreduction with significant activity and selectivity improvements [J].
Back, Seoin ;
Lim, Juhyung ;
Kim, Na-Young ;
Kim, Yong-Hyun ;
Jung, Yousung .
CHEMICAL SCIENCE, 2017, 8 (02) :1090-1096
[2]   Luminescent Carbon Nanodots: Emergent Nanolights [J].
Baker, Sheila N. ;
Baker, Gary A. .
ANGEWANDTE CHEMIE-INTERNATIONAL EDITION, 2010, 49 (38) :6726-6744
[3]   CO2 reduction on gas-diffusion electrodes and why catalytic performance must be assessed at commercially-relevant conditions [J].
Burdyny, Thomas ;
Smith, Wilson A. .
ENERGY & ENVIRONMENTAL SCIENCE, 2019, 12 (05) :1442-1453
[4]   Progress toward Commercial Application of Electrochemical Carbon Dioxide Reduction [J].
Chen, Chi ;
Kotyk, Juliet F. Khosrowabadi ;
Sheehan, Stafford W. .
CHEM, 2018, 4 (11) :2571-2586
[5]   Single-Atom Catalysts: Synthetic Strategies and Electrochemical Applications [J].
Chen, Yuanjun ;
Ji, Shufang ;
Chen, Chen ;
Peng, Qing ;
Wang, Dingsheng ;
Li, Yadong .
JOULE, 2018, 2 (07) :1242-1264
[6]   Recent Trends, Benchmarking, and Challenges of Electrochemical Reduction of CO2 by Molecular Catalysts [J].
Elouarzaki, Kamal ;
Kannan, Vishvak ;
Jose, Vishal ;
Sabharwal, Harshjyot Singh ;
Lee, Jong-Min .
ADVANCED ENERGY MATERIALS, 2019, 9 (24)
[7]   Activation of Ni Particles into Single Ni-N Atoms for Efficient Electrochemical Reduction of CO2 [J].
Fan, Qun ;
Hou, Pengfei ;
Choi, Changhyeok ;
Wu, Tai-Sing ;
Hong, Song ;
Li, Fang ;
Soo, Yun-Liang ;
Kang, Peng ;
Jung, Yousung ;
Sun, Zhenyu .
ADVANCED ENERGY MATERIALS, 2020, 10 (05)
[8]   General synthesis and definitive structural identification of MN4C4 single-atom catalysts with tunable electrocatalytic activities [J].
Fei, Huilong ;
Dong, Juncai ;
Feng, Yexin ;
Allen, Christopher S. ;
Wan, Chengzhang ;
Volosskiy, Boris ;
Li, Mufan ;
Zhao, Zipeng ;
Wang, Yiliu ;
Sun, Hongtao ;
An, Pengfei ;
Chen, Wenxing ;
Guo, Zhiying ;
Lee, Chain ;
Chen, Dongliang ;
Shakir, Imran ;
Liu, Mingjie ;
Hu, Tiandou ;
Li, Yadong ;
Kirkland, Angus I. ;
Duan, Xiangfeng ;
Huang, Yu .
NATURE CATALYSIS, 2018, 1 (01) :63-72
[9]   Hydroxyapatite interactions with copper complexes [J].
Fernane, F. ;
Mecherri, M. O. ;
Sharrock, P. ;
Fiallo, M. ;
Sipos, R. .
MATERIALS SCIENCE & ENGINEERING C-MATERIALS FOR BIOLOGICAL APPLICATIONS, 2010, 30 (07) :1060-1064
[10]   Electrochemical Behavior of the 1,10-Phenanthroline Ligand on a Multiwalled Carbon Nanotube Surface and Its Relevant Electrochemistry for Selective Recognition of Copper Ion and Hydrogen Peroxide Sensing [J].
Gayathri, Prakasam ;
Kumar, Annamalai Senthil .
LANGMUIR, 2014, 30 (34) :10513-10521