Oxygen transport model for layered MIEC composite membranes

被引:7
|
作者
Gerdes, Kirk [1 ]
Luss, Dan [1 ]
机构
[1] Univ Houston, Dept Chem Engn, Houston, TX 77204 USA
关键词
tubular oxygen membrane; flux direction dependence; surface exchange resistance; layered tubular membrane; oxygen flux increase;
D O I
10.1016/j.ssi.2006.09.002
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
Surface exchange resistance can reduce the oxygen transport through dense mixed ionic-electronic conducting (MIEC) membranes. Addition of an MIEC surface layer to a base substrate can reduce the surface exchange resistance. Existing oxygen transport relations that consider bulk diffusion and surface exchange resistance are extended to treat coated membranes formed by depositing a highly conductive, thin layer of MIEC on the surface of a dissimilar MIEC substrate and accounting for the solid/solid interfacial resistance. The oxygen flux through the coated membrane may exceed that through the bare membrane only if: 1) the surface exchange coefficient of the added layer is larger than the surface exchange coefficient of the bare membrane; and 2) the solid/solid interfacial resistance is sufficiently small. In general, deposition of the surface layer on the membrane tube surface exposed to lean gas leads to a larger oxygen flux than deposition of the layer on the oxygen rich side. A La0.5Sr0.5Fe0.8Ga0.2O3-delta/SrCo0.8Fe0.2O3-delta membrane achieved an oxygen outwards flux of 0.45 mL/min*cm(2) at 1000 degrees C from an air/helium gradient. This was a similar to 50% increase over that obtained using an uncoated LSFG tube. (c) 2006 Elsevier B.V. All rights reserved.
引用
收藏
页码:2931 / 2938
页数:8
相关论文
共 50 条
  • [1] Oxygen Transport Kinetics of MIEC Membranes Coated with Different Catalysts
    Liu, Yan
    Zhu, Yue
    Li, Mingrun
    Zhu, Xuefeng
    Yang, Weishen
    AICHE JOURNAL, 2016, 62 (08) : 2803 - 2812
  • [2] The modeling of oxygen transport in MIEC oxide hollow fiber membranes
    Shubnikova, E., V
    Popov, M. P.
    Bychkov, S. F.
    Chizhik, S. A.
    Nemudry, A. P.
    CHEMICAL ENGINEERING JOURNAL, 2019, 372 : 251 - 259
  • [3] Oxygen transfer across composite oxygen transport membranes
    van Hassel, BA
    SOLID STATE IONICS, 2004, 174 (1-4) : 253 - 260
  • [4] MIEC Materials for Membrane Applications: Enhancing the Oxygen Transport
    Ivers-Tiffee, E.
    Niedrig, C.
    Wagner, S. F.
    IONIC AND MIXED CONDUCTING CERAMICS 9, 2014, 61 (01): : 283 - 293
  • [5] MIEC-type ceramic membranes for the oxygen separation technology
    Swierczek, Konrad
    Zhao, Hailei
    Zhang, Zijia
    Du, Zhihong
    ENERGY AND FUELS 2018, 2019, 108
  • [6] Oxygen transport in composite materials for oxygen separators and syngas membranes
    Dhallu, M
    Ji, Y
    Kilner, JA
    MIXED IONIC ELECTRONIC CONDUCTING PEROVSKITES FOR ADVANCED ENERGY SYSTEMS, 2004, 173 : 253 - 263
  • [7] Ferrite-based MIEC membranes for oxygen separation and methane conversion
    Lu, XY
    Liu, ML
    SOLID-STATE IONIC DEVICES, 1999, 99 (13): : 139 - 150
  • [8] Directional dependence of oxygen ionic transport in a tubular MIEC membrane
    Gerdes, Kirk
    Luss, Dan
    SOLID STATE IONICS, 2006, 177 (13-14) : 1157 - 1162
  • [9] Oxygen flux increases through MIEC membranes by enhanced surface exchange
    Gerdes, Kirk
    Luss, Dan
    AICHE JOURNAL, 2007, 53 (05) : 1389 - 1391
  • [10] Modelling of oxygen transport through mixed ionic-electronic conducting (MIEC) ceramic-based membranes: An overview
    Li, Claudia
    Chew, Jiuan Jing
    Mahmoud, Ahmed
    Liu, Shaomin
    Sunarso, Jaka
    JOURNAL OF MEMBRANE SCIENCE, 2018, 567 : 228 - 260