A numerical study of void coalescence and fracture in nonlinear elasticity

被引:22
作者
Henao, Duvan [1 ]
Mora-Corral, Carlos [2 ]
Xu, Xianmin [3 ]
机构
[1] Pontificia Univ Catolica Chile, Fac Math, Vicuna Mackenna 4860, Santiago, Chile
[2] Univ Autonoma Madrid, Fac Sci, Dept Math, E-28049 Madrid, Spain
[3] Chinese Acad Sci, NCMIS, Inst Computat Math & Sci Engn Comp, LSEC, Beijing 100190, Peoples R China
基金
欧洲研究理事会;
关键词
Cavitation; Fracture; Void coalescence; Nonlinear elasticity; Gamma-convergence; Ambrosio-Tortorelli approximation; DUCTILE FRACTURE; VARIATIONAL-PROBLEMS; SINGULAR MINIMIZERS; CAVITATION; GROWTH; MODEL; APPROXIMATION; COMPUTATION; EXISTENCE; DAMAGE;
D O I
10.1016/j.cma.2016.01.012
中图分类号
T [工业技术];
学科分类号
08 ;
摘要
We present a numerical implementation of a model for void coalescence and fracture in nonlinear elasticity. The model is similar to the Ambrosio-Tortorelli regularization of the standard free-discontinuity variational model for quasistatic brittle fracture. The main change is the introduction of a nonlinear polyconvex energy that allows for cavitation. This change requires new analytic and numerical techniques. We propose a numerical method based on alternating directional minimization and a stabilized Crouzeix-Raviart finite element discretization. The method is used in several experiments, including void coalescence, void creation under tensile stress, failure in perfect materials and in materials with hard inclusions. The experimental results show the ability of the model and the numerical method to study different failure mechanisms in rubber-like materials. (C) 2016 Elsevier B.V. All rights reserved.
引用
收藏
页码:163 / 184
页数:22
相关论文
共 79 条
[61]   THE NUMERICAL COMPUTATION OF SINGULAR MINIMIZERS IN 2-DIMENSIONAL ELASTICITY [J].
NEGRONMARRERO, PV ;
BETANCOURT, O .
JOURNAL OF COMPUTATIONAL PHYSICS, 1994, 113 (02) :291-303
[62]  
Oberth A., 1965, Journal of Rheology, V9, P165, DOI DOI 10.1122/1.548997
[63]   Improved predictive modelling of strain localisation and ductile fracture in a Ti-6Al-4V alloy subjected to impact loading [J].
Petrinic, N. ;
Sosa, J. L. Curiel ;
Siviour, C. R. ;
Elliott, B. C. F. .
JOURNAL DE PHYSIQUE IV, 2006, 134 :147-155
[64]   Lattice orientation effects on void growth and coalescence in fcc single crystals [J].
Potirniche, GP ;
Hearndon, JL ;
Horstemeyer, MF ;
Ling, XW .
INTERNATIONAL JOURNAL OF PLASTICITY, 2006, 22 (05) :921-942
[65]   A molecular dynamics study of void growth and coalescence in single crystal nickel [J].
Potirniche, GP ;
Horstemeyer, MF ;
Wagner, GJ ;
Gullett, PM .
INTERNATIONAL JOURNAL OF PLASTICITY, 2006, 22 (02) :257-278
[66]   A micromechanical model of distributed damage due to void growth in general materials and under general deformation histories [J].
Reina, Celia ;
Li, Bo ;
Weinberg, Kerstin ;
Ortiz, Michael .
INTERNATIONAL JOURNAL FOR NUMERICAL METHODS IN ENGINEERING, 2013, 93 (06) :575-611
[67]   A level-set and anisotropic adaptive remeshing strategy for the modeling of void growth under large plastic strain [J].
Roux, E. ;
Bernacki, M. ;
Bouchard, P. O. .
COMPUTATIONAL MATERIALS SCIENCE, 2013, 68 :32-46
[68]   Three-dimensional molecular dynamics simulations of void coalescence during dynamic fracture of ductile metals -: art. no. 064112 [J].
Seppälä, ET ;
Belak, J ;
Rudd, RE .
PHYSICAL REVIEW B, 2005, 71 (06)
[69]   A variational void coalescence model for ductile metals [J].
Siddiq, Amir ;
Arciniega, Roman ;
El Sayed, Tamer .
COMPUTATIONAL MECHANICS, 2012, 49 (02) :185-195
[70]   The convergence of regularized minimizers for cavitation problems in nonlinear elasticity [J].
Sivaloganathan, J ;
Spector, SJ ;
Tilakraj, V .
SIAM JOURNAL ON APPLIED MATHEMATICS, 2006, 66 (03) :736-757