A numerical study of void coalescence and fracture in nonlinear elasticity

被引:22
作者
Henao, Duvan [1 ]
Mora-Corral, Carlos [2 ]
Xu, Xianmin [3 ]
机构
[1] Pontificia Univ Catolica Chile, Fac Math, Vicuna Mackenna 4860, Santiago, Chile
[2] Univ Autonoma Madrid, Fac Sci, Dept Math, E-28049 Madrid, Spain
[3] Chinese Acad Sci, NCMIS, Inst Computat Math & Sci Engn Comp, LSEC, Beijing 100190, Peoples R China
基金
欧洲研究理事会;
关键词
Cavitation; Fracture; Void coalescence; Nonlinear elasticity; Gamma-convergence; Ambrosio-Tortorelli approximation; DUCTILE FRACTURE; VARIATIONAL-PROBLEMS; SINGULAR MINIMIZERS; CAVITATION; GROWTH; MODEL; APPROXIMATION; COMPUTATION; EXISTENCE; DAMAGE;
D O I
10.1016/j.cma.2016.01.012
中图分类号
T [工业技术];
学科分类号
08 ;
摘要
We present a numerical implementation of a model for void coalescence and fracture in nonlinear elasticity. The model is similar to the Ambrosio-Tortorelli regularization of the standard free-discontinuity variational model for quasistatic brittle fracture. The main change is the introduction of a nonlinear polyconvex energy that allows for cavitation. This change requires new analytic and numerical techniques. We propose a numerical method based on alternating directional minimization and a stabilized Crouzeix-Raviart finite element discretization. The method is used in several experiments, including void coalescence, void creation under tensile stress, failure in perfect materials and in materials with hard inclusions. The experimental results show the ability of the model and the numerical method to study different failure mechanisms in rubber-like materials. (C) 2016 Elsevier B.V. All rights reserved.
引用
收藏
页码:163 / 184
页数:22
相关论文
共 79 条
[11]   A NUMERICAL-METHOD FOR DETECTING SINGULAR MINIMIZERS [J].
BALL, JM ;
KNOWLES, G .
NUMERISCHE MATHEMATIK, 1987, 51 (02) :181-197
[12]  
BALL JM, 1977, ARCH RATION MECH AN, V63, P337, DOI 10.1007/BF00279992
[13]   A simulation of growth and coalescence of voids during ductile fracture [J].
Bandstra, JP ;
Koss, DA .
MATERIALS SCIENCE AND ENGINEERING A-STRUCTURAL MATERIALS PROPERTIES MICROSTRUCTURE AND PROCESSING, 2004, 387 :399-403
[14]   Deformation behaviour of elastomeric matrix composites under static loading conditions [J].
Bayraktar, E. ;
Bessri, K. ;
Bathias, C. .
ENGINEERING FRACTURE MECHANICS, 2008, 75 (09) :2695-2706
[15]   Ductile Fracture by Void Growth to Coalescence [J].
Benzerga, A. Amine ;
Leblond, Jean-Baptiste .
ADVANCES IN APPLIED MECHANICS, VOL 44, 2010, 44 :169-305
[16]   Numerical experiments in revisited brittle fracture [J].
Bourdin, B ;
Francfort, GA ;
Marigo, JJ .
JOURNAL OF THE MECHANICS AND PHYSICS OF SOLIDS, 2000, 48 (04) :797-826
[17]   A relaxation result for energies defined on pairs set-function and applications [J].
Braides, Andrea ;
Chambolle, Antonin ;
Solci, Margherita .
ESAIM-CONTROL OPTIMISATION AND CALCULUS OF VARIATIONS, 2007, 13 (04) :717-734
[18]   AN ADAPTIVE FINITE ELEMENT APPROXIMATION OF A VARIATIONAL MODEL OF BRITTLE FRACTURE [J].
Burke, Siobhan ;
Ortner, Christoph ;
Sueli, Endre .
SIAM JOURNAL ON NUMERICAL ANALYSIS, 2010, 48 (03) :980-1012
[19]  
Carstensen C., 2010, Computational Methods in Applied Mathematics, V10, P137, DOI 10.2478/cmam-2010-0008
[20]   Void interaction and coalescence in polymeric materials [J].
Cheng, L. ;
Guo, T. F. .
INTERNATIONAL JOURNAL OF SOLIDS AND STRUCTURES, 2007, 44 (06) :1787-1808