The asymptotic distributions of sums of record values for distributions with lognormal-type tails

被引:0
作者
Hu, ZS [1 ]
Su, C
Wang, DC
机构
[1] Univ Sci & Technol China, Dept Stat & Finance, Hefei 230026, Peoples R China
[2] Univ Elect Sci China, Dept Appl Math, Chengdu 650054, Peoples R China
来源
SCIENCE IN CHINA SERIES A-MATHEMATICS | 2002年 / 45卷 / 12期
关键词
limit distribution; lognormal; record; regular variable; slowly varying;
D O I
10.1360/02ys9167
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
Let X-1, X-2,... be a sequence of i.i.d. random variables and let X-(1), X-(2),... be the associated k for record value sequence. We focus on the asymptotic distributions of sums of records, T-n = Sigma(k=1)(n) X-1 is an element of LN(gamma). In this case, we find that 2 is a strange point for parameter gamma. When gamma > 2, T-n is asymptotically normal, while for 2 > gamma > 1, we prove that T-n cannot converge in distribution to any non-degenerate law through common centralizing and normalizing and log T-n is asymptotically normal.
引用
收藏
页码:1557 / 1566
页数:10
相关论文
共 7 条
[1]  
[Anonymous], [No title captured]
[2]  
Arnold B.C., 1999, EXTREMES, V1, P351, DOI [10.1023/A:1009933902505, DOI 10.1023/A:1009933902505]
[3]  
BINGHAM NH, 1987, REGULAR VARIATION, P6
[4]  
CSORGO M, 1981, STRONG APPROXIMATION, P115
[5]   Large Deviations of Heavy-Tailed Sums with Applications in Insurance [J].
T. Mikosch ;
A.V. Nagaev .
Extremes, 1998, 1 (1) :81-110
[6]  
PETROV VV, 1995, LIMIT THEOREMS PROBA, P120
[7]  
Resnick S.I., 1973, STOCH PROC APPL, V1, P67