J. L. Lions' problem on maximal regularity

被引:20
作者
Arendt, Wolfgang [1 ]
Dier, Dominik [1 ]
Fackler, Stephan [1 ]
机构
[1] Univ Ulm, Inst Appl Anal, Helmholtzstr 18, D-89069 Ulm, Germany
关键词
Sesquilinear forms; Non-autonomous evolution equations; Maximal regularity; SQUARE-ROOT PROBLEM; PSEUDODIFFERENTIAL-OPERATORS; NONAUTONOMOUS FORMS; BOUNDARY-CONDITIONS; ELLIPTIC-OPERATORS; EQUATIONS; SPACES; DOMAINS;
D O I
10.1007/s00013-017-1031-6
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
This is a survey on recent progress concerning maximal regularity of non-autonomous equations governed by time-dependent forms on a Hilbert space. It also contains two new results showing the limits of the theory.
引用
收藏
页码:59 / 72
页数:14
相关论文
共 35 条
[1]  
Achache M., 2016, ARXIV160700254V1
[2]  
[Anonymous], 1962, J. Math. Soc. Japan, DOI 10.2969/jmsj/01420242
[3]   Functional calculus, variational methods and Liapunov's theorem [J].
Arendt, W ;
Bu, SQ ;
Haase, M .
ARCHIV DER MATHEMATIK, 2001, 77 (01) :65-75
[4]   Maximal regularity for non-autonomous Robin boundary conditions [J].
Arendt, Wolfgang ;
Monniaux, Sylvie .
MATHEMATISCHE NACHRICHTEN, 2016, 289 (11-12) :1325-1340
[5]  
Arendt W, 2014, ADV DIFFERENTIAL EQU, V19, P1043
[6]  
Arendt W, 2010, ANN SCUOLA NORM-SCI, V9, P523
[7]   ON THE RIGHT MULTIPLICATIVE PERTURBATION OF NON-AUTONOMOUS Lp-MAXIMAL REGULARITY [J].
Augner, Bjoern ;
Jacob, Birgit ;
Laasri, Hafida .
JOURNAL OF OPERATOR THEORY, 2015, 74 (02) :391-415
[8]   Square roots of elliptic second order divergence operators on strongly Lipschitz domains:: L2 theory [J].
Auscher, P ;
Tchamitchian, P .
JOURNAL D ANALYSE MATHEMATIQUE, 2003, 90 (1) :1-12
[9]   The solution of the Kato square root problem for second order elliptic operators on Rn [J].
Auscher, P ;
Hofmann, S ;
Lacey, M ;
McIntosh, A ;
Tchamitchian, P .
ANNALS OF MATHEMATICS, 2002, 156 (02) :633-654
[10]   On non-autonomous maximal regularity for elliptic operators in divergence form [J].
Auscher, Pascal ;
Egert, Moritz .
ARCHIV DER MATHEMATIK, 2016, 107 (03) :271-284