Uniqueness of positive radial solutions for quasilinear elliptic equations in an annulus

被引:3
|
作者
Castorina, D. [1 ]
机构
[1] Univ Perugia, Dipartimento Matemat & Informat, I-06100 Perugia, Italy
关键词
Uniqueness; Radial solutions; P-Laplace equations; Annulus; DIRICHLET PROBLEM; GROUND-STATES; DELTA-U+F(U)=0; R(N); RN;
D O I
10.1016/j.na.2009.10.018
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
Extending a previous result of Tang [1] we prove the uniqueness of positive radial solutions of Delta(p)u + f(u) = 0, subject to Dirichlet boundary conditions on an annulus in R(n) with 2 < p <= n, under suitable hypotheses on the nonlinearity f. This argument also provides an alternative proof for the uniqueness of positive solutions of the same problem in a finite ball (see [9]), in the complement of a ball or in the whole space R(n) (see [10,3,11]). (C) 2009 Published by Elsevier Ltd
引用
收藏
页码:2195 / 2203
页数:9
相关论文
共 50 条