The smooth entropy formalism for von Neumann algebras

被引:22
作者
Berta, Mario [1 ]
Furrer, Fabian [2 ,3 ]
Scholz, Volkher B. [4 ]
机构
[1] CALTECH, Inst Quantum Informat & Matter, Pasadena, CA 91125 USA
[2] Univ Tokyo, Grad Sch Sci, Dept Phys, Tokyo 113, Japan
[3] Leibniz Univ Hannover, Inst Theoret Phys, Hannover, Germany
[4] ETH, Inst Theoret Phys, Zurich, Switzerland
基金
日本学术振兴会;
关键词
QUANTUM; RANDOMNESS;
D O I
10.1063/1.4936405
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
We discuss information-theoretic concepts on infinite-dimensional quantum systems. In particular, we lift the smooth entropy formalism as introduced by Renner and collaborators for finite-dimensional systems to von Neumann algebras. For the smooth conditional min- and max-entropy, we recover similar characterizing properties and information-theoretic operational interpretations as in the finite-dimensional case. We generalize the entropic uncertainty relation with quantum side information of Tomamichel and Renner and discuss applications to quantum cryptography. In particular, we prove the possibility to perform privacy amplification and classical data compression with quantum side information modeled by a von Neumann algebra. (C) 2015 AIP Publishing LLC.
引用
收藏
页数:25
相关论文
共 59 条
[1]   A NOTE ON THE TRANSITION-PROBABILITY OVER C-STAR-ALGEBRAS [J].
ALBERTI, PM .
LETTERS IN MATHEMATICAL PHYSICS, 1983, 7 (01) :25-32
[2]  
[Anonymous], 2013, Mathematische grundlagen der quantenmechanik
[3]  
[Anonymous], 1981, Operator algebras and quantum statistical mechanics
[4]  
[Anonymous], 1986, FUNDAMENTALS THEORY
[5]  
Araki H., 1968, Publ. Res. Inst. Math. Sci., V4, P51, DOI 10.2977/prims/1195195263
[6]  
Arveson W., 1969, Acta Math, V123, P141, DOI 10.1007/BF02392388
[7]   Discriminating states:: The quantum Chernoff bound [J].
Audenaert, K. M. R. ;
Calsamiglia, J. ;
Munoz-Tapia, R. ;
Bagan, E. ;
Masanes, Ll. ;
Acin, A. ;
Verstraete, F. .
PHYSICAL REVIEW LETTERS, 2007, 98 (16)
[8]   Generalized privacy amplification [J].
Bennett, CH ;
Brassard, G ;
Crepeau, C ;
Maurer, UM .
IEEE TRANSACTIONS ON INFORMATION THEORY, 1995, 41 (06) :1915-1923
[9]   PRIVACY AMPLIFICATION BY PUBLIC DISCUSSION [J].
BENNETT, CH ;
BRASSARD, G ;
ROBERT, JM .
SIAM JOURNAL ON COMPUTING, 1988, 17 (02) :210-229
[10]  
Berta M, 2012, LECT NOTES COMPUT SC, V7417, P776