Computation of the glandular radiation dose in digital tomosynthesis of the breast

被引:112
作者
Sechopoulos, Ioannis
Suryanarayanan, Sankarararnan
Vedantham, Srinivasan
D'Orsi, Carl
Karellas, Andrew
机构
[1] Emory Univ, Sch Med, Dept Radiol, Atlanta, GA 30322 USA
[2] Winship Canc Inst, Atlanta, GA 30322 USA
[3] Georgia Inst Technol, Wallace H Coulter Dept Biomed Engn, Atlanta, GA 30332 USA
关键词
D O I
10.1118/1.2400836
中图分类号
R8 [特种医学]; R445 [影像诊断学];
学科分类号
1002 ; 100207 ; 1009 ;
摘要
Tomosynthesis of the breast is currently a topic of intense interest as a logical next step in the evolution of digital mammography. This study reports on the computation of glandular radiation dose in digital tomosynthesis of the breast. Previously, glandular dose estimations in tomosynthesis have been performed using data from studies of radiation dose in conventional planar mammography. This study evaluates, using Monte Carlo methods, the normalized glandular dose (DgN) to the breast during a tomosynthesis study, and characterizes its dependence on breast size, tissue composition, and x-ray spectrum. The conditions during digital tomosynthesis imaging of the breast were simulated using a computer program based on the Geant4 toolkit. With the use of simulated breasts of varying size, thickness and tissue composition, the DgN to the breast tissue was computed for varying x-ray spectra and tomosynthesis projection angle. Tomosynthesis projections centered about both the cranio-caudal (CC) and medio-lateral oblique (MLO) views were simulated. For each projection angle, the ratio of the glandular dose for that projection to the glandular dose for the zero degree projection was computed. This ratio was denoted the relative glandular dose (RGD) coefficient, and its variation under different imaging parameters was analyzed. Within mammoaraphic energies, the RGD was found to have a weak dependence on glandular fraction and x-ray spectrum for both views. A substantial dependence on breast size and thickness was found for the MLO view, and to a lesser extent for the CC view. Although RGD values deviate substantially from unity as a function of projection angle, the RGD averaged over all projections in a complete tomosynthesis study varies from 0.91 to 1.01. The RGD results were fit to mathematical functions and the resulting equations are provided. (c) 2007 American Association of Physicists in Medicine.
引用
收藏
页码:221 / 232
页数:12
相关论文
共 34 条
[1]   GEANT4-a simulation toolkit [J].
Agostinelli, S ;
Allison, J ;
Amako, K ;
Apostolakis, J ;
Araujo, H ;
Arce, P ;
Asai, M ;
Axen, D ;
Banerjee, S ;
Barrand, G ;
Behner, F ;
Bellagamba, L ;
Boudreau, J ;
Broglia, L ;
Brunengo, A ;
Burkhardt, H ;
Chauvie, S ;
Chuma, J ;
Chytracek, R ;
Cooperman, G ;
Cosmo, G ;
Degtyarenko, P ;
Dell'Acqua, A ;
Depaola, G ;
Dietrich, D ;
Enami, R ;
Feliciello, A ;
Ferguson, C ;
Fesefeldt, H ;
Folger, G ;
Foppiano, F ;
Forti, A ;
Garelli, S ;
Giani, S ;
Giannitrapani, R ;
Gibin, D ;
Cadenas, JJG ;
González, I ;
Abril, GG ;
Greeniaus, G ;
Greiner, W ;
Grichine, V ;
Grossheim, A ;
Guatelli, S ;
Gumplinger, P ;
Hamatsu, R ;
Hashimoto, K ;
Hasui, H ;
Heikkinen, A ;
Howard, A .
NUCLEAR INSTRUMENTS & METHODS IN PHYSICS RESEARCH SECTION A-ACCELERATORS SPECTROMETERS DETECTORS AND ASSOCIATED EQUIPMENT, 2003, 506 (03) :250-303
[2]   Geant4 developments and applications [J].
Allison, J ;
Amako, K ;
Apostolakis, J ;
Araujo, H ;
Dubois, PA ;
Asai, M ;
Barrand, G ;
Capra, R ;
Chauvie, S ;
Chytracek, R ;
Cirrone, GAP ;
Cooperman, G ;
Cosmo, G ;
Cuttone, G ;
Daquino, GG ;
Donszelmann, M ;
Dressel, M ;
Folger, G ;
Foppiano, F ;
Generowicz, J ;
Grichine, V ;
Guatelli, S ;
Gumplinger, P ;
Heikkinen, A ;
Hrivnacova, I ;
Howard, A ;
Incerti, S ;
Ivanchenko, V ;
Johnson, T ;
Jones, F ;
Koi, T ;
Kokoulin, R ;
Kossov, M ;
Kurashige, H ;
Lara, V ;
Larsson, S ;
Lei, F ;
Link, O ;
Longo, F ;
Maire, M ;
Mantero, A ;
Mascialino, B ;
McLaren, I ;
Lorenzo, PM ;
Minamimoto, K ;
Murakami, K ;
Nieminen, P ;
Pandola, L ;
Parlati, S ;
Peralta, L .
IEEE TRANSACTIONS ON NUCLEAR SCIENCE, 2006, 53 (01) :270-278
[3]   Glandular breast dose for monoenergetic and high-energy X-ray beams: Monte Carlo assessment [J].
Boone, JM .
RADIOLOGY, 1999, 213 (01) :23-37
[4]   Molybdenum, rhodium, and tungsten anode spectral models using interpolating polynomials with application to mammography [J].
Boone, JM ;
Fewell, TR ;
Jennings, RJ .
MEDICAL PHYSICS, 1997, 24 (12) :1863-1874
[5]   Normalized glandular dose (DgN) coefficients for arbitrary x-ray spectra in mammography: Computer-fit values of Monte Carlo derived data [J].
Boone, JM .
MEDICAL PHYSICS, 2002, 29 (05) :869-875
[6]   Dedicated breast CT: Radiation dose and image quality evaluation [J].
Boone, JM ;
Nelson, TR ;
Lindfors, KK ;
Seibert, JA .
RADIOLOGY, 2001, 221 (03) :657-667
[7]  
Botsco M, 1999, MAMMOGRAPHY QUALITY
[8]   Cone-beam volume CT breast imaging: Feasibility study [J].
Chen, B ;
Ning, R .
MEDICAL PHYSICS, 2002, 29 (05) :755-770
[9]   MONTE-CARLO CALCULATION OF CONVERSION FACTORS FOR THE ESTIMATION OF MEAN GLANDULAR BREAST DOSE [J].
DANCE, DR .
PHYSICS IN MEDICINE AND BIOLOGY, 1990, 35 (09) :1211-1219
[10]   Digital x-ray tomosynthesis: current state of the art and clinical potential [J].
Dobbins, JT ;
Godfrey, DJ .
PHYSICS IN MEDICINE AND BIOLOGY, 2003, 48 (19) :R65-R106