Quasistatic evolution in the theory of perfect elasto-plastic plates. Part II: Regularity of bending moments

被引:4
作者
Demyanov, A. [1 ]
机构
[1] SISSA, I-34014 Trieste, Italy
来源
ANNALES DE L INSTITUT HENRI POINCARE-ANALYSE NON LINEAIRE | 2009年 / 26卷 / 06期
关键词
Quasistatic evolution; Rate independent processes; Elasto-plastic plates; Regularity of solutions; VARIATIONAL-PROBLEMS; PLASTIC MATERIALS; DIFFERENTIABILITY;
D O I
10.1016/j.anihpc.2009.01.006
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We study differentiability of solutions of quasistatic problems for perfect clasto-plastic plates. We prove that in the isotropic case bending moments has locally square-integrable first derivatives: M is an element of L(infinity)([0, T]; W(loc)(1,2)(Omega; M(sym)(2x2))). The result is based on discretization of time and uniform estimates of solutions of the incremental problems, which generalize the estimates in the static case of perfect elasto-plastic plates. (C) 2009 Elsevier Masson SAS. All rights reserved.
引用
收藏
页码:2137 / 2163
页数:27
相关论文
共 20 条
[1]  
[Anonymous], 1983, Problemes mathematiques en plasticite
[2]  
[Anonymous], 1985, Sobolev Spaces
[3]  
[Anonymous], 1996, COMMENT MATH U CAROL
[4]   ON THE EXTREMAL STRESS AND DISPLACEMENT IN HENCKY PLASTICITY [J].
ANZELLOTTI, G .
DUKE MATHEMATICAL JOURNAL, 1984, 51 (01) :133-147
[5]   Quasistatic evolution problems for linearly elastic-perfectly plastic materials [J].
Dal Maso, G ;
DeSimone, A ;
Mora, MG .
ARCHIVE FOR RATIONAL MECHANICS AND ANALYSIS, 2006, 180 (02) :237-291
[6]   Quasistatic evolution problems for pressure-sensitive plastic materials [J].
Dal Maso, Gianni ;
Demyanov, Alexey ;
DeSimone, Antonio .
MILAN JOURNAL OF MATHEMATICS, 2007, 75 (01) :117-134
[7]  
DEMENGEL F, 1989, ARCH RATION MECH AN, V105, P123
[8]   Regularity of stresses in Prandtl-Reuss perfect plasticity [J].
Demyanov, A. .
CALCULUS OF VARIATIONS AND PARTIAL DIFFERENTIAL EQUATIONS, 2009, 34 (01) :23-72
[9]   QUASISTATIC EVOLUTION IN THE THEORY OF PERFECTLY ELASTO-PLASTIC PLATES PART I: EXISTENCE OF A WEAK SOLUTION [J].
Demyanov, Alexey .
MATHEMATICAL MODELS & METHODS IN APPLIED SCIENCES, 2009, 19 (02) :229-256
[10]  
FUCHS M., 2000, VARIATIONAL METHODS