Annihilating Pores in the Desired Layer of a Porous Silicon Bilayer with Different Porosities for Layer Transfer

被引:14
作者
Chiang, C-C [1 ]
Lee, Benjamin T-H [1 ]
机构
[1] Natl Cent Univ, Dept Mech Engn, Taoyuan, Taiwan
关键词
SI; GROWTH; CELLS;
D O I
10.1038/s41598-019-49119-8
中图分类号
O [数理科学和化学]; P [天文学、地球科学]; Q [生物科学]; N [自然科学总论];
学科分类号
07 ; 0710 ; 09 ;
摘要
A silicon layer that is tens of micrometers thick on a handle substrate is desired for applications involving power devices, microelectromechanical systems (MEMS), highly efficient silicon solar cells (<50 mu m), etc. In general, if the initial silicon layer obtained from the layer transfer process using the etch-stop or ion-cut techniques, which may provide very accurate thickness control, is too thin, then additional epitaxial growth is required to increase the thickness of the silicon layer. However, epitaxial growth under strict predeposition conditions is a time-consuming and expensive process. On the other hand, producing porous silicon via anodization in a hydrofluoric acid solution offers an efficient way to control the dimensions of the generated pores directly on the nano- or macrosca le via the current density. When sintering the porous layer via high-temperature argon annealing, the porosity of the porous layer determines whether this porous layer can serve as a device layer or a separation layer. In addition, it is clearly easier to create a transferred layer ten of micrometers thick via anodization than by ion implantation and/or epitaxial deposition.
引用
收藏
页数:9
相关论文
共 37 条
[1]   Surface self-diffusion of silicon during high temperature annealing [J].
Acosta-Alba, Pablo E. ;
Kononchuk, Oleg ;
Gourdel, Christophe ;
Claverie, Alain .
JOURNAL OF APPLIED PHYSICS, 2014, 115 (13)
[2]  
Agarwal V., 2014, Handbook of Porous Silicon, P153
[3]  
Auberton-Herve AJ, 2002, EMIS PROCESSING SERI, V1, P149
[4]   Modeling and simulation of layer-transferred thin silicon solar cell with quasi monocrystalline porous silicon as active layer [J].
Banerjee, M ;
Dutta, SK ;
Gangopadhyay, U ;
Majumdar, D ;
Saha, H .
SOLID-STATE ELECTRONICS, 2005, 49 (08) :1282-1291
[5]   Integration of low-loss inductors on thin porous silicon membranes [J].
Bardet, B. ;
Desplobain, S. ;
Billoue, J. ;
Ventura, L. ;
Gautier, Gael .
MICROELECTRONIC ENGINEERING, 2018, 194 :96-99
[6]   Layer transfer by controlled spalling [J].
Bedell, Stephen W. ;
Fogel, Keith ;
Lauro, Paul ;
Shahrjerdi, Davood ;
Ott, John A. ;
Sadana, Devendra .
JOURNAL OF PHYSICS D-APPLIED PHYSICS, 2013, 46 (15)
[7]   Textured monocrystalline thin-film Si cells from the porous silicon (PSI) process [J].
Brendel, R ;
Auer, R ;
Artmann, H .
PROGRESS IN PHOTOVOLTAICS, 2001, 9 (03) :217-221
[8]  
Canham L., 2018, Handbook of Porous Silicon, P3, DOI DOI 10.1007/978-3-319-71381-61
[9]   III-V-on-silicon solar cells reaching 33% photoconversion efficiency in two-terminal configuration [J].
Cariou, Romain ;
Benick, Jan ;
Feldmann, Frank ;
Hohn, Oliver ;
Hauser, Hubert ;
Beutel, Paul ;
Razek, Nasser ;
Wimplinger, Markus ;
Blasi, Benedikt ;
Lackner, David ;
Hermle, Martin ;
Siefer, Gerald ;
Glunz, Stefan W. ;
Bett, Andreas W. ;
Dimroth, Frank .
NATURE ENERGY, 2018, 3 (04) :326-333
[10]   Stress-induced large-area lift-off of crystalline Si films [J].
Dross, F. ;
Robbelein, J. ;
Vandevelde, B. ;
Van Kerschaver, E. ;
Gordon, I. ;
Beaucarne, G. ;
Poortmans, J. .
APPLIED PHYSICS A-MATERIALS SCIENCE & PROCESSING, 2007, 89 (01) :149-152