Conservation and divergence of microRNAs and their functions in Euphorbiaceous plants

被引:93
作者
Zeng, Changying [2 ]
Wang, Wenquan
Zheng, Yun [1 ]
Chen, Xin
Bo, Weiping [2 ]
Song, Shun [2 ]
Zhang, Weixiong [1 ,3 ]
Peng, Ming
机构
[1] Washington Univ, Dept Comp Sci & Engn, St Louis, MO USA
[2] Hainan Univ, Haikou, Peoples R China
[3] Washington Univ, Sch Med, Dept Genet, St Louis, MO 63110 USA
基金
美国国家科学基金会;
关键词
STRESS-RESPONSIVE MICRORNAS; TRANSLATIONAL INHIBITION; VASCULAR DEVELOPMENT; APICAL MERISTEM; SMALL RNAS; ARABIDOPSIS; EXPRESSION; GENES; IDENTIFICATION; CLEAVAGE;
D O I
10.1093/nar/gkp1035
中图分类号
Q5 [生物化学]; Q7 [分子生物学];
学科分类号
071010 ; 081704 ;
摘要
MicroRNAs (miRNAs) are similar to 21 nt non-coding RNAs which regulate post-transcriptional gene expression. miRNAs are key regulators of nearly all essential biological processes. Aiming at understanding miRNA's functions in Euphorbiaceae, a large flowering plant family, we performed a genome-scale systematic study of miRNAs in Euphorbiaceae, by combining computational prediction and experimental analysis to overcome the difficulty of lack of genomes for most Euphorbiaceous species. Specifically, we predicted 85 conserved miRNAs in 23 families in the Castor bean (Ricinus communis), and experimentally verified and characterized 58 (68.2%) of the 85 miRNAs in at least one of four Euphorbiaceous species, the Castor bean, the Cassava (Manihot esculenta), the Rubber tree (Hevea brasiliensis) and the Jatropha (Jatropha curcas) during normal seedling development. To elucidate their function in stress response, we verified and profiled 48 (56.5%) of the 85 miRNAs under cold and drought stresses as well as during the processes of stress recovery. The results revealed some species- and condition-specific miRNA expression patterns. Finally, we predicted 258 miRNA:target partners, and identified the cleavage sites of six out of ten miRNA targets by a modified 5' RACE. This study produced the first collection of miRNAs and their targets in Euphorbiaceae. Our results revealed wide conservation of many miRNAs and diverse functions in Euphorbiaceous plants during seedling growth and in response to abiotic stresses.
引用
收藏
页码:981 / 995
页数:15
相关论文
共 74 条
[1]   MicroRNA-mediated systemic down-regulation of copper protein expression in response to low copper availability in arabidopsis [J].
Abdel-Ghany, Salah E. ;
Pilon, Marinus .
JOURNAL OF BIOLOGICAL CHEMISTRY, 2008, 283 (23) :15932-15945
[2]   Modulation of floral development by a gibberellin-regulated microRNA [J].
Achard, P ;
Herr, A ;
Baulcombe, DC ;
Harberd, NP .
DEVELOPMENT, 2004, 131 (14) :3357-3365
[3]  
Allen E, 2005, CELL, V121, P207, DOI 10.1016/j.cell.2005.04.004
[4]   Genetic analysis reveals functional redundancy and the major target genes of the Arabidopsis miR159 family [J].
Allen, Robert S. ;
Li, Junyan ;
Stahle, Melissa I. ;
Dubroue, Aurelie ;
Gubler, Frank ;
Millar, Anthony A. .
PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 2007, 104 (41) :16371-16376
[5]   A family of microRNAs present in plants and animals [J].
Arteaga-Vazquez, Mario ;
Caballero-Perez, Juan ;
Vielle-Calzada, Jean-Philippe .
PLANT CELL, 2006, 18 (12) :3355-3369
[6]   Differences in vertebrate microRNA expression [J].
Ason, Brandon ;
Darnell, Diana K. ;
Wittbrodt, Beate ;
Berezikov, Eugene ;
Kloosterman, Wigard P. ;
Wittbrodt, Jochen ;
Antin, Parker B. ;
Plasterk, Ronald H. A. .
PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 2006, 103 (39) :14385-14389
[7]   Regulation of flowering time and floral organ identity by a microRNA and its APETALA2-like target genes [J].
Aukerman, MJ ;
Sakai, H .
PLANT CELL, 2003, 15 (11) :2730-2741
[8]   MicroRNAs: Genomics, biogenesis, mechanism, and function (Reprinted from Cell, vol 116, pg 281-297, 2004) [J].
Bartel, David P. .
CELL, 2007, 131 (04) :11-29
[9]   The NAC-domain transcription factor GOBLET specifies leaflet boundaries in compound tomato leaves [J].
Berger, Yael ;
Harpaz-Saad, Smadar ;
Brand, Arnon ;
Melnik, Hadas ;
Sirding, Neti ;
Alvarez, John Paul ;
Zinder, Michael ;
Samach, Alon ;
Eshed, Yuval ;
Ori, Naomi .
DEVELOPMENT, 2009, 136 (05) :823-832
[10]   MicroRNA166 controls root and nodule development in Medicago truncatula [J].
Boualem, Adnane ;
Laporte, Philippe ;
Jovanovic, Mariana ;
Laffont, Carole ;
Plet, Julie ;
Combier, Jean-Philippe ;
Niebel, Andreas ;
Crespi, Martin ;
Frugier, Florian .
PLANT JOURNAL, 2008, 54 (05) :876-887