Nematic polymer mechanics: flow-induced anisotropy

被引:8
作者
Zheng, Xiaoyu [1 ]
Forest, M. Gregory
Lipton, Robert
Zhou, Ruhai
机构
[1] Kent State Univ, Dept Math Sci, Kent, OH 44242 USA
[2] Univ N Carolina, Dept Math, Chapel Hill, NC USA
[3] Louisiana State Univ, Dept Math, Baton Rouge, LA 70803 USA
[4] Old Dominion Univ, Dept Math & Stat, Norfolk, VA 23529 USA
关键词
elastic moduli; nano-rods; composite properties; nematics polymer; flow;
D O I
10.1007/s00161-006-0032-7
中图分类号
O414.1 [热力学];
学科分类号
摘要
In this paper, we model and compute flow-induced mechanical properties of nematic polymer nano-composites, consisting of transversely isotropic rigid spheroids in an isotropic matrix. Our goal is to fill a gap in the theoretical literature between random and perfectly aligned spheroidal composites (Odegard et al. in Compos. Sci. Technol. 63, 1671-1687, 2003; Gusev et al. in Adv. Eng. Mater. 4(12), 927-931 2002; Torquato in Random heterogeneous materials. Springer, Berlin Heidelberg New York, 2002; Milton in The Theory of Composites. Cambridge University Press, Cambridge, 2002) by modeling the influence of nano-particle volume fraction, flow type and flow rate on nano-composite elasticity tensors. As these influences vary, we predict the degree of elastic anisotropy, determining the number of independent moduli, and compute their values relative to the nano-particle and matrix moduli. We restrict here to monodomains, addressing features associated with orientational configurations of the rod or platelet ensemble. The key modeling advance is the transfer of symmetries (Forest et al. in Phys. Fluids 12(3), 490-498, 2000) and numerical databases (Forest et al. in Rheol. Acta 43(1), 17-37, 2004a, Rheol. Acta 44(1), 80-93, 2004b) for the orientational probability distribution function of the nematic polymer ensemble into the classical Mori-Tanaka effective elasticity tensor formalism. Isotropic, transversely isotropic, orthotropic, monoclinic, and maximally anisotropic elasticity tensors are realized as volume fraction, imposed flow type and flow strength are varied, with 2, 5, 9, 13 or 21 independent moduli for the various symmetries.
引用
收藏
页码:377 / 394
页数:18
相关论文
共 33 条
[1]   Asymptotic states of a Smoluchowski equation [J].
Constantin, P ;
Kevrekidis, IG ;
Titi, ES .
ARCHIVE FOR RATIONAL MECHANICS AND ANALYSIS, 2004, 174 (03) :365-384
[2]  
de Gennes PG., 1994, The physics of liquid crystals
[3]  
DOI M, 1981, J POLYM SCI POL PHYS, V19, P229, DOI 10.1002/pol.1981.180190205
[4]  
DOI M, 1986, THEORY POLYMER DYNAM
[5]  
ESHELBY JD, 1957, P ROY SOC LOND A MAT, V241, P396
[6]   The rigid-rod model for nematic polymers: An analysis of the shear flow problem [J].
Faraoni, V ;
Grosso, M ;
Crescitelli, S ;
Maffettone, PL .
JOURNAL OF RHEOLOGY, 1999, 43 (03) :829-843
[7]   The flow-phase diagram of Doi-Hess theory for sheared nematic polymers II: finite shear rates [J].
Forest, M ;
Wang, Q ;
Zhou, RH .
RHEOLOGICA ACTA, 2004, 44 (01) :80-93
[8]   Anisotropy and dynamic ranges in effective properties of sheared nematic polymer nanocomposites [J].
Forest, MG ;
Zheng, XY ;
Zhou, RH ;
Wang, Q ;
Lipton, R .
ADVANCED FUNCTIONAL MATERIALS, 2005, 15 (12) :2029-2035
[9]   Monodomain response of arbitrary aspect ratio nematic polymers in general linear planar flows [J].
Forest, MG ;
Wang, Q ;
Zhou, RH ;
Choate, EP .
JOURNAL OF NON-NEWTONIAN FLUID MECHANICS, 2004, 118 (01) :17-31
[10]   The weak shear kinetic phase diagram for nematic polymers [J].
Forest, MG ;
Wang, Q ;
Zhou, RH .
RHEOLOGICA ACTA, 2004, 43 (01) :17-37