Detoxification of ionic liquids using glutathione, cysteine, and NADH: Toxicity evaluation by Tetrahymena pyriformis

被引:16
作者
Cui, Yin Hua [1 ]
Shi, Qing Shan [1 ]
Zhang, Dan Dan [1 ]
Wang, Ling Ling [1 ]
Feng, Jin [1 ]
Chen, Yi Wen [2 ]
Xie, Xiao Bao [1 ]
机构
[1] Guangdong Acad Sci, Guangdong Inst Microbiol, Guangdong Prov Key Lab Microbial Culture Collect, State Key Lab Appl Microbiol Southern China, Guangzhou 510070, Peoples R China
[2] Guangdong Detect Ctr Microbiol, Guangdong Inst Microbiol, Guangdong Prov Key Lab Microbial Culture Collect, State Key Lab Appl Microbiol Southern China, Guangzhou 510070, Peoples R China
基金
中国国家自然科学基金;
关键词
Ionic liquids; Glutathione; Nicotinamide adenine dinucleotide; Cysteine; Reactive oxygen species; Tetrahymena pyriformis; CAENORHABDITIS-ELEGANS; METALLOTHIONEIN; THERMOPHILA; HOMEOSTASIS; PROTEIN; CYTOTOXICITY; INHIBITION; METABOLISM; APOPTOSIS; SELENIUM;
D O I
10.1016/j.envpol.2021.116725
中图分类号
X [环境科学、安全科学];
学科分类号
08 ; 0830 ;
摘要
Ionic liquids (ILs), also known as green solvents, are widely acknowledged in several fields, such as chemical separation, synthesis, and electrochemistry, owing to their excellent physiochemical properties. However, their poor biodegradability may lead to environmental and health risks, posing a severe threat to humans, thus requiring further research. In this study, the biotoxicities of the imidazolium-based ILs were evaluated in Tetrahymena pyriformis. Moreover, IL detoxification was investigated by addition of glutathione (GSH), cysteine, and nicotinamide adenine dinucleotide (NADH). Reactive oxygen species (ROS) initiated by different IL types caused damage to Tetrahymena, while glutathione, cysteine, and NADH eliminated ROS, achieving the detoxification purposes. Detoxification results showed that NADH exhibited the best detoxification ability, followed by glutathione and cysteine. Finally, RT-PCR results suggested that metallothionein might have participated in IL detoxification. (C) 2020 The Author(s).
引用
收藏
页数:10
相关论文
共 57 条
[1]   Cellular redox homeostasis, reactive oxygen species and replicative ageing in Saccharomyces cerevisiae [J].
Ayer, Anita ;
Gourlay, Campbell W. ;
Dawes, Ian W. .
FEMS YEAST RESEARCH, 2014, 14 (01) :60-72
[2]   Developmental toxicity assessment of the ionic liquid 1-butyl-3-methylimidazolium chloride in CD-1 mice [J].
Bailey, Melissa M. ;
Townsend, Megan B. ;
Jernigan, Peter L. ;
Sturdivant, John ;
Hough-Troutman, Whitney L. ;
Rasco, Jane F. ;
Swatloski, Richard P. ;
Rogers, Robin D. ;
Hood, Ronald D. .
GREEN CHEMISTRY, 2008, 10 (11) :1213-1217
[3]  
Birkmayer JGD, 2004, J ENVIRON PATHOL TOX, V23, P179, DOI 10.1615/jenvpathtoxoncol.v23.i3.20
[4]   Ecotoxicity of nanoparticles of CuO and ZnO in natural water [J].
Blinova, I. ;
Ivask, A. ;
Heinlaan, M. ;
Mortimer, M. ;
Kahru, A. .
ENVIRONMENTAL POLLUTION, 2010, 158 (01) :41-47
[5]  
Bruggemann W., 1985, ZAHNARZT, V20, P391
[6]   A brief overview of the potential environmental hazards of ionic liquids [J].
Bubalo, Marina Cvjetko ;
Radosevic, Kristina ;
Redovnikovic, Ivana Radojcic ;
Halambek, Jasna ;
Srcek, Visnja Gaurina .
ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY, 2014, 99 :1-12
[7]   How green are ionic liquids? - A multicriteria decision analysis approach [J].
Bystrzanowska, Marta ;
Pena-Pereira, Francisco ;
Marcinkowski, Lukasz ;
Tobiszewski, Marek .
ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY, 2019, 174 :455-458
[8]   Protein oxidation and cellular homeostasis: Emphasis on metabolism [J].
Cecarini, Valentina ;
Gee, Jillian ;
Fioretti, Evandro ;
Amici, Manila ;
Angeletti, Mauro ;
Eleuteri, Anna Maria ;
Keller, Jeffrey N. .
BIOCHIMICA ET BIOPHYSICA ACTA-MOLECULAR CELL RESEARCH, 2007, 1773 (02) :93-104
[9]   Occurrence of the fungus mycotoxin, ustiloxin A, in surface waters of paddy fields in Enshi, Hubei, China, and toxicity in Tetrahymena thermophila [J].
Cheng, Shiyang ;
Liu, Hao ;
Sun, Qian ;
Kong, Ren ;
Letcher, Robert J. ;
Liu, Chunsheng .
ENVIRONMENTAL POLLUTION, 2019, 251 :901-909
[10]  
CHRISTENSEN ST, 1992, ACTA PROTOZOOL, V31, P215