Augmented Online Sequential Quaternion Extreme Learning Machine

被引:7
作者
Zhu, Shuai [1 ]
Wang, Hui [1 ]
Lv, Hui [2 ]
Zhang, Huisheng [1 ]
机构
[1] Dalian Maritime Univ, Sch Sci, Dalian 116026, Peoples R China
[2] Shandong Intelligent Equipment Inst, Ctr HRG, Jinan 250200, Peoples R China
基金
中国国家自然科学基金;
关键词
Extreme learning machine; Online sequential learning; Quaternion signal processing; Augmented quaternion statistics;
D O I
10.1007/s11063-021-10435-8
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
Online sequential extreme learning machine (OS-ELM) is one of the most popular real-time learning strategy for feedforward neural networks with single hidden layer due to its fast learning speed and excellent generalization ability. When dealing with quaternion signals, traditional real-valued learning models usually provide only suboptimal solutions compared with their quaternion-valued counterparts. However, online sequential quaternion extreme learning machine (OS-QELM) model is still lacking in literature. To fill this gap, this paper aims to establish a framework for the derivation and the design of OS-QELM. Specifically, we first derive a standard OS-QELM, and then propose two augmented OS-QELM models which can capture the complete second-order statistics of noncircular quaternion signals. The corresponding regularized models and two approaches to reducing the computational complexity are also derived and discussed respectively. Benefiting from the quaternion algebra and the augmented structure, the proposed models exhibit superiority over OS-ELM in simulation results on several benchmark quaternion regression problems and colour face recognition problems.
引用
收藏
页码:1161 / 1186
页数:26
相关论文
共 50 条
  • [1] Augmented Online Sequential Quaternion Extreme Learning Machine
    Shuai Zhu
    Hui Wang
    Hui Lv
    Huisheng Zhang
    Neural Processing Letters, 2021, 53 : 1161 - 1186
  • [2] Augmented Quaternion Extreme Learning Machine
    Zhang, Huisheng
    Lv, Hui
    IEEE ACCESS, 2019, 7 : 90842 - 90850
  • [3] Online sequential reduced kernel extreme learning machine
    Deng, Wan-Yu
    Ong, Yew-Soon
    Tan, Puay Siew
    Zheng, Qing-Hua
    NEUROCOMPUTING, 2016, 174 : 72 - 84
  • [4] Online sequential extreme learning machine in nonstationary environments
    Ye, Yibin
    Squartini, Stefano
    Piazza, Francesco
    NEUROCOMPUTING, 2013, 116 : 94 - 101
  • [5] Ensemble of online sequential extreme learning machine
    Lan, Yuan
    Soh, Yeng Chai
    Huang, Guang-Bin
    NEUROCOMPUTING, 2009, 72 (13-15) : 3391 - 3395
  • [6] Parallel online sequential extreme learning machine based on MapReduce
    Wang, Botao
    Huang, Shan
    Qiu, Junhao
    Liu, Yu
    Wang, Guoren
    NEUROCOMPUTING, 2015, 149 : 224 - 232
  • [7] Online Sequential Extreme Learning Machine With Dynamic Forgetting Factor
    Cao, Weipeng
    Ming, Zhong
    Xu, Zhiwu
    Zhang, Jiyong
    Wang, Qiang
    IEEE ACCESS, 2019, 7 : 179746 - 179757
  • [8] Quaternion Extreme Learning Machine
    Lv, Hui
    Zhang, Huisheng
    PROCEEDINGS OF ELM-2016, 2018, 9 : 27 - 36
  • [9] An Enhanced Online Sequential Extreme Learning Machine Algorithm
    Jun, Yu
    Er, Meng Joo
    2008 CHINESE CONTROL AND DECISION CONFERENCE, VOLS 1-11, 2008, : 2902 - 2907
  • [10] Online sequential extreme learning machine with forgetting mechanism
    Zhao, Jianwei
    Wang, Zhihui
    Park, Dong Sun
    NEUROCOMPUTING, 2012, 87 : 79 - 89