On the Lyapunov stability of linear conservative gyroscopic systems

被引:6
作者
Bulatovic, R
机构
来源
COMPTES RENDUS DE L ACADEMIE DES SCIENCES SERIE II FASCICULE B-MECANIQUE PHYSIQUE ASTRONOMIE | 1997年 / 324卷 / 11期
关键词
D O I
10.1016/S1251-8069(97)83173-9
中图分类号
O [数理科学和化学]; P [天文学、地球科学]; Q [生物科学]; N [自然科学总论];
学科分类号
07 ; 0710 ; 09 ;
摘要
A sufficient and necessary stability condition for a class of linear conservative gyroscopic systems with negative stiffness matrices is established. The condition is nonspectral; it involves only the definiteness of a certain combination of the coefficient matrices of the equations of motion.
引用
收藏
页码:679 / 683
页数:5
相关论文
共 12 条
[1]  
BULATOVIC R, IN PRESS PRIKL MATH
[2]  
CHETAYEV NG, 1961, STABILITY MOTION
[3]  
Horn R A., 2012, Matrix Analysis, V2nd edn, DOI 10.1017/CBO9780511810817
[4]   ON THE STABILITY OF LINEAR CONSERVATIVE GYROSCOPIC SYSTEMS [J].
HUSEYIN, K ;
HAGEDORN, P ;
TESCHNER, W .
ZEITSCHRIFT FUR ANGEWANDTE MATHEMATIK UND PHYSIK, 1983, 34 (06) :807-815
[5]  
Lancaster P., 1966, LAMBDA MATRICES VIBR
[6]  
MERKIN DR, 1956, GYROSCOPIC SYSTEMS
[7]  
ROSEAU M, 1988, VIBRATIONS MECH SYST
[8]  
SEYRANIAN A, 1994, 486 DCAMM TU DENM, P13
[9]  
Thomson (LordKelvin) W., 1879, TREATISE NATURAL P 1
[10]   STABILITY OF LINEAR CONSERVATIVE GYROSCOPIC SYSTEMS [J].
WALKER, JA .
JOURNAL OF APPLIED MECHANICS-TRANSACTIONS OF THE ASME, 1991, 58 (01) :229-232