Liouville-type theorem for nonlinear elliptic equations involving p-Laplace-type Grushin operators

被引:19
作者
Wei, Yunfeng [1 ,2 ]
Chen, Caisheng [2 ]
Chen, Qiang [3 ]
Yang, Hongwei [4 ]
机构
[1] Nanjing Audit Univ, Sch Stat & Math, Nanjing 211815, Jiangsu, Peoples R China
[2] Hohai Univ, Coll Sci, Nanjing 210098, Jiangsu, Peoples R China
[3] Yancheng Inst Technol, Sch Math & Phys, Yancheng 224051, Peoples R China
[4] Shandong Univ Sci & Technol, Coll Math & Syst Sci, Qingdao 266590, Shandong, Peoples R China
基金
中国博士后科学基金; 中国国家自然科学基金;
关键词
Grushin operator; Liouville-type theorem; p-Laplace-type; stable solutions; STABLE-SOLUTIONS; POSITIVE SOLUTIONS;
D O I
10.1002/mma.5886
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In this article, we prove the Liouville-type theorem for stable solutions of weighted p-Laplace-type Grushin equations -divG(a(z)|. Gu| p-2. Gu) = h(z) eu, z = (x,..). RN = RN1 x RN2 (1) and divG(a(z)|. Gu| p-2. Gu) = h(z) u-q, z = (x,..). RN = RN1 x RN2, (2) where p = 2, q > 0 and a(z), h(z). L1 loc(RN) are nonnegative functions satisfying a(z) = C1|| z|| b G and h(z) = C2|| z||.. G as || z|| G = R0 with p -N.. < b <.. + p, R0, Ci(i = 1, 2) are some positive constants. divG(.., g) = SN1 i= 1.... i.. xi + (1 +..)| x|.. SN2.. = 1.. g........,(.., g). C1(RN, RN1 x RN2),. G = (. x, (1 +..)| x|... y),.. = 0, z = (x,..). RN = RN1 x RN2 and || z|| G = (| x| 2(1+..) + |.. | 2) 1 2(1+..). The results hold true for N.. <.. 0(p, b,..) in (1) and q > qc(p, N.., b,..) in (2). Here,.. 0 and qc are new exponents, which are always larger than the classical critical ones and depend on the parameters p, b and... N-gamma = N1 + (1 + gamma) N-2 is the homogeneous dimension of R-N.
引用
收藏
页码:320 / 333
页数:14
相关论文
共 31 条