Convergence of truncated rough singular integrals supported by subvarieties on Triebel-Lizorkin spaces

被引:2
作者
Liu, Feng [1 ]
Xue, Qingying [2 ]
Yabuta, Kozo [3 ]
机构
[1] Shandong Univ Sci & Technol, Coll Math & Syst Sci, Qingdao 266590, Shandong, Peoples R China
[2] Beijing Normal Univ, Lab Math & Complex Syst, Minist Educ, Sch Math Sci, Beijing 100875, Peoples R China
[3] Kwansei Gakuin Univ, Math Sci Res Ctr, Gakuen 2-1, Sanda 6691337, Japan
基金
日本学术振兴会; 中国国家自然科学基金;
关键词
Singular Radon transform; truncated singular integral; rough kernel; convergence; 42B20; 42B25; OPERATORS; KERNELS;
D O I
10.1007/s11464-019-0765-9
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
Let be a function of homogeneous of degree zero and satisfy the cancellation condition on the unit sphere. Suppose that h is a radial function. Let be the classical singular Radon transform, and let be its truncated operator with rough kernels associated to polynomial mapping , which is defined by . In this paper, we show that for any (-, ) and (p, q) satisfying certain index condition, the operator enjoys the following convergence properties and , provided that L(log(+)L)(Sn-1) for some ( 0, 1], or H-1(Sn-1), or (1<q<Bq(0,0)(Sn-1)).
引用
收藏
页码:591 / 604
页数:14
相关论文
共 17 条
[1]   On certain estimates for Marcinkiewicz integrals and extrapolation [J].
Al-Qassem, Hussain ;
Pan, Yibiao .
COLLECTANEA MATHEMATICA, 2009, 60 (02) :123-145
[2]   Singular integrals with rough kernels [J].
Al-Salman, A ;
Pan, YB .
CANADIAN MATHEMATICAL BULLETIN-BULLETIN CANADIEN DE MATHEMATIQUES, 2004, 47 (01) :3-11
[3]   Singular integrals with rough kernels in L log L(Sn-1) [J].
Al-Salman, A ;
Pan, YB .
JOURNAL OF THE LONDON MATHEMATICAL SOCIETY-SECOND SERIES, 2002, 66 :153-174
[4]   Rough singular integrals supported on submanifolds [J].
Chen, Yanping ;
Ding, Yong ;
Liu, Honghai .
JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 2010, 368 (02) :677-691
[5]  
Colzani L., 1982, HARDY SPACES SPHERES
[6]  
Fan DS, 1997, AM J MATH, V119, P799
[7]  
Frazier M., 1991, CBMS REGIONAL C SERI, V79
[8]  
Grafakos L, 1998, INDIANA U MATH J, V47, P455
[9]   Rough maximal singular integral and maximal operators supported by subvarieties on Triebel-Lizorkin spaces [J].
Liu, Feng ;
Xue, Qingying ;
Yabuta, Kozo .
NONLINEAR ANALYSIS-THEORY METHODS & APPLICATIONS, 2018, 171 :41-72
[10]   Boundedness of certain singular integrals along surfaces on Triebel-Lizorkin spaces [J].
Liu, Feng ;
Wu, Huoxiong ;
Zhang, Daiqing .
FORUM MATHEMATICUM, 2015, 27 (06) :3439-3460