Iterative Network for Image Super-Resolution

被引:21
作者
Liu, Yuqing [1 ]
Wang, Shiqi [2 ]
Zhang, Jian [3 ]
Wang, Shanshe [4 ]
Ma, Siwei [4 ]
Gao, Wen [4 ]
机构
[1] Dalian Univ Technol, Sch Software, Dalian 116620, Peoples R China
[2] City Univ Hong Kong, Dept Comp Sci, Kowloon Tong, Hong Kong, Peoples R China
[3] Peking Univ, Shenzhen Grad Sch, Sch Elect & Comp Engn, Shenzhen 518055, Peoples R China
[4] Peking Univ, Sch Elect Engn & Comp Sci, Inst Digital Media, Beijing 100871, Peoples R China
基金
美国国家科学基金会;
关键词
Degradation; Superresolution; Optimization; Image restoration; Visualization; Convolution; Training; Single image super-resolution; iterative optimization; feature normalization; RECOVERY;
D O I
10.1109/TMM.2021.3078615
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
Single image super-resolution (SISR), as a traditional ill-conditioned inverse problem, has been greatly revitalized by the recent development of convolutional neural networks (CNN). These CNN-based methods generally map a low-resolution image to its corresponding high-resolution version with sophisticated network structures and loss functions, showing impressive performances. This paper provides a new insight on conventional SISR algorithm, and proposes a substantially different approach relying on the iterative optimization. A novel iterative super-resolution network (ISRN) is proposed on top of the iterative optimization. We first analyze the observation model of image SR problem, inspiring a feasible solution by mimicking and fusing each iteration in a more general and efficient manner. Considering the drawbacks of batch normalization, we propose a feature normalization (F-Norm, FN) method to regulate the features in network. Furthermore, a novel block with FN is developed to improve the network representation, termed as FNB. Residual-in-residual structure is proposed to form a very deep network, which groups FNBs with a long skip connection for better information delivery and stabling the training phase. Extensive experimental results on testing benchmarks with bicubic (BI) degradation show our ISRN can not only recover more structural information, but also achieve competitive or better PSNR/SSIM results with much fewer parameters compared to other works. Besides BI, we simulate the real-world degradation with blur-downscale (BD) and downscale-noise (DN). ISRN and its extension ISRN+ both achieve better performance than others with BD and DN degradation models.
引用
收藏
页码:2259 / 2272
页数:14
相关论文
共 46 条
[1]   Fast Image Recovery Using Variable Splitting and Constrained Optimization [J].
Afonso, Manya V. ;
Bioucas-Dias, Jose M. ;
Figueiredo, Mario A. T. .
IEEE TRANSACTIONS ON IMAGE PROCESSING, 2010, 19 (09) :2345-2356
[2]   NTIRE 2017 Challenge on Single Image Super-Resolution: Dataset and Study [J].
Agustsson, Eirikur ;
Timofte, Radu .
2017 IEEE CONFERENCE ON COMPUTER VISION AND PATTERN RECOGNITION WORKSHOPS (CVPRW), 2017, :1122-1131
[3]   Fast, Accurate, and Lightweight Super-Resolution with Cascading Residual Network [J].
Ahn, Namhyuk ;
Kang, Byungkon ;
Sohn, Kyung-Ah .
COMPUTER VISION - ECCV 2018, PT X, 2018, 11214 :256-272
[4]   Low-Complexity Single-Image Super-Resolution based on Nonnegative Neighbor Embedding [J].
Bevilacqua, Marco ;
Roumy, Aline ;
Guillemot, Christine ;
Morel, Marie-Line Alberi .
PROCEEDINGS OF THE BRITISH MACHINE VISION CONFERENCE 2012, 2012,
[5]   The 2018 PIRM Challenge on Perceptual Image Super-Resolution [J].
Blau, Yochai ;
Mechrez, Roey ;
Timofte, Radu ;
Michaeli, Tomer ;
Zelnik-Manor, Lihi .
COMPUTER VISION - ECCV 2018 WORKSHOPS, PT V, 2019, 11133 :334-355
[6]   Second-order Attention Network for Single Image Super-Resolution [J].
Dai, Tao ;
Cai, Jianrui ;
Zhang, Yongbing ;
Xia, Shu-Tao ;
Zhang, Lei .
2019 IEEE/CVF CONFERENCE ON COMPUTER VISION AND PATTERN RECOGNITION (CVPR 2019), 2019, :11057-11066
[7]   Image Super-Resolution Using Deep Convolutional Networks [J].
Dong, Chao ;
Loy, Chen Change ;
He, Kaiming ;
Tang, Xiaoou .
IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE, 2016, 38 (02) :295-307
[8]   CONSTRAINED RESTORATION AND THE RECOVERY OF DISCONTINUITIES [J].
GEMAN, D ;
REYNOLDS, G .
IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE, 1992, 14 (03) :367-383
[9]   Blind Super-Resolution With Iterative Kernel Correction [J].
Gu, Jinjin ;
Lu, Hannan ;
Zuo, Wangmeng ;
Dong, Chao .
2019 IEEE/CVF CONFERENCE ON COMPUTER VISION AND PATTERN RECOGNITION (CVPR 2019), 2019, :1604-1613
[10]   Deep Back-Projection Networks For Super-Resolution [J].
Haris, Muhammad ;
Shakhnarovich, Greg ;
Ukita, Norimichi .
2018 IEEE/CVF CONFERENCE ON COMPUTER VISION AND PATTERN RECOGNITION (CVPR), 2018, :1664-1673