Subseasonal relationship between Arctic and Eurasian surface air temperature

被引:42
作者
Kim, Hye-Jin [1 ]
Son, Seok-Woo [1 ]
Moon, Woosok [2 ,3 ]
Kug, Jong-Seong [4 ]
Hwang, Jaeyoung [1 ]
机构
[1] Seoul Natl Univ, Sch Earth & Environm Sci, Seoul 08826, South Korea
[2] Stockholm Univ, Dept Math, Stockholm, Sweden
[3] Nord Inst Theoret Phys NORDITA, Stockholm, Sweden
[4] Pohang Univ Sci & Technol POSTECH, Div Environm Sci & Engn, Pohang, South Korea
基金
新加坡国家研究基金会;
关键词
WINTER URAL BLOCKING; INCREASED QUASI STATIONARITY; EXTREME COLD EVENTS; SEA-ICE; PART II; IMPACT; PERSISTENCE; TRENDS; LINK;
D O I
10.1038/s41598-021-83486-5
中图分类号
O [数理科学和化学]; P [天文学、地球科学]; Q [生物科学]; N [自然科学总论];
学科分类号
07 ; 0710 ; 09 ;
摘要
The subseasonal relationship between Arctic and Eurasian surface air temperature (SAT) is re-examined using reanalysis data. Consistent with previous studies, a significant negative correlation is observed in cold season from November to February, but with a local minimum in late December. This relationship is dominated not only by the warm Arctic-cold Eurasia (WACE) pattern, which becomes more frequent during the last two decades, but also by the cold Arctic-warm Eurasia (CAWE) pattern. The budget analyses reveal that both WACE and CAWE patterns are primarily driven by the temperature advection associated with sea level pressure anomaly over the Ural region, partly cancelled by the diabatic heating. It is further found that, although the anticyclonic anomaly of WACE pattern mostly represents the Ural blocking, about 20% of WACE cases are associated with non-blocking high pressure systems. This result indicates that the Ural blocking is not a necessary condition for the WACE pattern, highlighting the importance of transient weather systems in the subseasonal Arctic-Eurasian SAT co-variability.
引用
收藏
页数:10
相关论文
共 40 条
[1]  
Bretherton CS, 1999, J CLIMATE, V12, P1990, DOI 10.1175/1520-0442(1999)012<1990:TENOSD>2.0.CO
[2]  
2
[3]   Impact of Winter Ural Blocking on Arctic Sea Ice: Short-Time Variability [J].
Chen, Xiaodan ;
Luo, Dehai ;
Feldstein, Steven B. ;
Lee, Sukyoung .
JOURNAL OF CLIMATE, 2018, 31 (06) :2267-2282
[4]  
Cohen J, 2014, NAT GEOSCI, V7, P627, DOI [10.1038/NGEO2234, 10.1038/ngeo2234]
[5]   The ERA-Interim reanalysis: configuration and performance of the data assimilation system [J].
Dee, D. P. ;
Uppala, S. M. ;
Simmons, A. J. ;
Berrisford, P. ;
Poli, P. ;
Kobayashi, S. ;
Andrae, U. ;
Balmaseda, M. A. ;
Balsamo, G. ;
Bauer, P. ;
Bechtold, P. ;
Beljaars, A. C. M. ;
van de Berg, L. ;
Bidlot, J. ;
Bormann, N. ;
Delsol, C. ;
Dragani, R. ;
Fuentes, M. ;
Geer, A. J. ;
Haimberger, L. ;
Healy, S. B. ;
Hersbach, H. ;
Holm, E. V. ;
Isaksen, L. ;
Kallberg, P. ;
Koehler, M. ;
Matricardi, M. ;
McNally, A. P. ;
Monge-Sanz, B. M. ;
Morcrette, J. -J. ;
Park, B. -K. ;
Peubey, C. ;
de Rosnay, P. ;
Tavolato, C. ;
Thepaut, J. -N. ;
Vitart, F. .
QUARTERLY JOURNAL OF THE ROYAL METEOROLOGICAL SOCIETY, 2011, 137 (656) :553-597
[6]   Evidence linking Arctic amplification to extreme weather in mid-latitudes [J].
Francis, Jennifer A. ;
Vavrus, Stephen J. .
GEOPHYSICAL RESEARCH LETTERS, 2012, 39
[7]   The combined influences of autumnal snow and sea ice on Northern Hemisphere winters [J].
Furtado, J. C. ;
Cohen, J. L. ;
Tziperman, E. .
GEOPHYSICAL RESEARCH LETTERS, 2016, 43 (07) :3478-3485
[8]  
Gong TT, 2017, J CLIMATE, V30, P2639, DOI [10.1175/JCLI-D-16-0548.1, 10.1175/jcli-d-16-0548.1]
[9]   Arctic influence on subseasonal midlatitude prediction [J].
Jung, Thomas ;
Kasper, Marta Anna ;
Semmler, Tido ;
Serrar, Soumia .
GEOPHYSICAL RESEARCH LETTERS, 2014, 41 (10) :3676-3680
[10]   Weakening of the stratospheric polar vortex by Arctic sea-ice loss [J].
Kim, Baek-Min ;
Son, Seok-Woo ;
Min, Seung-Ki ;
Jeong, Jee-Hoon ;
Kim, Seong-Joong ;
Zhang, Xiangdong ;
Shim, Taehyoun ;
Yoon, Jin-Ho .
NATURE COMMUNICATIONS, 2014, 5