Entropy, stability, and Yang-Mills flow

被引:8
作者
Kelleher, Casey [1 ]
Streets, Jeffrey [1 ]
机构
[1] Univ Calif Irvine, Dept Math, Rowland Hall, Irvine, CA 92617 USA
基金
美国国家科学基金会;
关键词
Yang-Mills; entropy; stability; geometric flow; MEAN-CURVATURE FLOW; HARMONIC MAP; SINGULARITIES;
D O I
10.1142/S0219199715500327
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
Following [T. Colding and W. Minicozzi, II, Generic mean curvature flow I; generic singularities, Ann. of Math. 175(2) (2012) 755-833], we define a notion of entropy for connections over Rn which has shrinking Yang-Mills solitons as critical points. As in [T. Colding and W. Minicozzi, II, Generic mean curvature flow I; generic singularities, Ann. of Math. 175(2) (2012) 755-833], this entropy is defined implicitly, making it difficult to work with analytically. We prove a theorem characterizing entropy stability in terms of the spectrum of a certain linear operator associated to the soliton. This leads furthermore to a gap theorem for solitons. These results point to a broader strategy of studying "generic singularities" of the Yang-Mills flow, and we discuss the differences in this strategy in dimension n = 4 versus n >= 5.
引用
收藏
页数:51
相关论文
共 20 条
[1]   STABILITY AND ISOLATION PHENOMENA FOR YANG-MILLS FIELDS [J].
BOURGUIGNON, JP ;
LAWSON, HB .
COMMUNICATIONS IN MATHEMATICAL PHYSICS, 1981, 79 (02) :189-230
[2]  
CHEN YM, 1994, CALC VAR PARTIAL DIF, V2, P389
[3]  
Chen Z.-Q., T AM MATH S IN PRESS
[4]   Generic mean curvature flow I; generic singularities [J].
Colding, Tobias H. ;
Minicozzi, William P., II .
ANNALS OF MATHEMATICS, 2012, 175 (02) :755-833
[5]   Singularities of first kind in the harmonic map and Yang-Mills heat flows [J].
Gastel, A .
MATHEMATISCHE ZEITSCHRIFT, 2002, 242 (01) :47-62
[6]   Finite time blow-up for the Yang-Mills heat flow in higher dimensions [J].
Grotowski, JF .
MATHEMATISCHE ZEITSCHRIFT, 2001, 237 (02) :321-333
[7]  
Hamilton R.S., 1993, COMMUN ANAL GEOM, V1, P127
[8]  
HUISKEN G, 1990, J DIFFER GEOM, V31, P285
[9]  
Ilmanen T., 1995, preprint
[10]  
Li P., 2012, CAMBRIDGE STUDIES AD, V134