coupled wave equation;
exponential stability;
frequency domain approach;
past history damping;
polynomial stability;
strong stability;
INDIRECT BOUNDARY STABILIZATION;
ABSTRACT EVOLUTION-EQUATIONS;
POLYNOMIAL DECAY;
EXPONENTIAL STABILITY;
ASYMPTOTIC STABILITY;
SYSTEMS;
BEHAVIOR;
D O I:
10.1002/mma.7235
中图分类号:
O29 [应用数学];
学科分类号:
070104 ;
摘要:
In this paper, we investigate the stabilization of a locally coupled wave equations with local viscoelastic damping of past history type acting only in one equation via non smooth coefficients. First, using a general criteria of Arendt-Batty, we prove the strong stability of our system. Second, using a frequency domain approach combined with the multiplier method, we establish the exponential stability of the solution if and only if the two waves have the same speed of propagation. In case of different speed propagation, we prove that the energy of our system decays polynomially with rate t(-1). Finally, we show the lack of exponential stability if the speeds of wave propagation are different.
机构:Univ Paris 06, Lab Jacques Louis Lions, UMR 7598, F-75005 Paris, France
Alabau-Boussouira, Fatiha
Leautaud, Matthieu
论文数: 0引用数: 0
h-index: 0
机构:
Univ Paris 06, Lab Jacques Louis Lions, UMR 7598, F-75005 Paris, France
CNRS, UMR LJLL 7598, F-75005 Paris, France
CNRS UMR 2706, INRIA Paris Rocquencourt ENSTA, Lab POEMS, F-78153 Le Chesnay, FranceUniv Paris 06, Lab Jacques Louis Lions, UMR 7598, F-75005 Paris, France
机构:Univ Paris 06, Lab Jacques Louis Lions, UMR 7598, F-75005 Paris, France
Alabau-Boussouira, Fatiha
Leautaud, Matthieu
论文数: 0引用数: 0
h-index: 0
机构:
Univ Paris 06, Lab Jacques Louis Lions, UMR 7598, F-75005 Paris, France
CNRS, UMR LJLL 7598, F-75005 Paris, France
CNRS UMR 2706, INRIA Paris Rocquencourt ENSTA, Lab POEMS, F-78153 Le Chesnay, FranceUniv Paris 06, Lab Jacques Louis Lions, UMR 7598, F-75005 Paris, France