Exact solutions of a variant Boussinesq system

被引:26
作者
Singh, K.
Gupta, R. K.
机构
[1] Jaypee Univ Informat Technol, Dept Math, Kandaghat 173215, Himachal Prades, India
[2] Inst Technol & Management, Dept Appl Sci & Humanities, Gurgaon 122017, Haryana, India
关键词
D O I
10.1016/j.ijengsci.2006.07.009
中图分类号
T [工业技术];
学科分类号
08 ;
摘要
We apply the symmetry method based on the Frechet derivative of the differential operators to deduce the Lie symmetries of the following variant of the Boussinesq equations u(t) + alpha(1) (t)v(x) + beta(1) (t)uu(x) + gamma(1) (t)u(xx) = 0 v(t) + alpha(2) (t)uv(x) + beta 2(t)uv(x) + gamma(2)(t)v(xx) +p(t)u(xxx) = 0 where alpha(i)(t), beta(i)(t), gamma(i)(t), i = 1, 2 and p(t) are arbitrary functions of t. For each infinitesimal generator in the optimal system of subalgebras we study the reduced ODE and, among other solutions, furnish some nontrivial exact solutions in terms of hyperbolic functions. (c) 2006 Elsevier Ltd. All rights reserved.
引用
收藏
页码:1256 / 1268
页数:13
相关论文
共 11 条
[1]  
[Anonymous], INT J MATH MATH SCI, DOI 10.1155/IJMMS.2005.3711
[2]  
Boussinesq MJ, 1871, C R Math Acad Sci Paris, V72, P755
[3]   New transformations and new approach to find exact solutions to nonlinear equations [J].
Fu, ZT ;
Liu, SK ;
Liu, SD .
PHYSICS LETTERS A, 2002, 299 (5-6) :507-512
[4]  
OLVER PJ, 1993, GRADUATE TEXTS MATH, V107
[6]   Lie symmetries and exact solutions of a new generalized Hirota-Satsuma coupled KdV system with variable coefficients [J].
Singh, K. ;
Gupta, R. K. .
INTERNATIONAL JOURNAL OF ENGINEERING SCIENCE, 2006, 44 (3-4) :241-255
[7]  
STEINBERG S, 1979, 367 U NEW MEX
[8]  
XIA TC, 2003, APPL MATH E NOTES, V3, P171
[9]  
Xu GQ, 2003, CHINESE J PHYS, V41, P232
[10]   New exact solutions for three nonlinear evolution equations [J].
Yao, RX ;
Li, ZB .
PHYSICS LETTERS A, 2002, 297 (3-4) :196-204