High-Triplet-Energy Dendrons: Enhancing the Luminescence of Deep Blue Phosphorescent Iridium(III) Complexes

被引:173
作者
Lo, Shih-Chun [1 ]
Harding, Ruth E. [2 ]
Shipley, Christopher P. [3 ]
Stevenson, Stuart G. [2 ]
Burn, Paul L. [1 ]
Samuel, Ifor D. W. [2 ]
机构
[1] Univ Queensland, Ctr Organ Photon & Elect, Sch Chem & Mol Biosci, Brisbane, Qld 4072, Australia
[2] Univ St Andrews, Organ Semicond Ctr, SUPA, Sch Phys & Astron, Haugh KY16 9SS, Fife, Scotland
[3] Univ Oxford, Dept Chem, Chem Res Lab, Oxford OX1 3TA, England
基金
英国工程与自然科学研究理事会; 澳大利亚研究理事会;
关键词
LIGHT-EMITTING-DIODES; ELECTROLUMINESCENT DEVICES; CONJUGATED POLYMERS; CORED DENDRIMERS; EFFICIENT; ELECTROPHOSPHORESCENCE; CARBAZOLE; MOLECULES; EMISSION; LIGANDS;
D O I
10.1021/ja903157e
中图分类号
O6 [化学];
学科分类号
0703 ;
摘要
Solution-processable blue phosphorescent emitters with high luminescence efficiency are highly desirable for large-area displays and lighting applications. This report shows that when a fac-tris[1-methyl-5-(4-fluorophenyl)-3-n-propyl-1H-[1,2,4]triazolyl]iridium(III) complex core is encapsulated by rigid high-triplet-energy dendrons, both the physical and photophysical properties can be optimized. The high-triplet-energy and rigid dendrons were composed of twisted biphenyl dendrons with the twisting arising from the use of tetrasubstituted branching phenyl rings. The blue phosphorescent dendrimer was synthesized using a convergent approach and was found to be solution-processable and to possess a high glass transition temperature of 148 degrees C. The dendrimer had an exceptionally high solution photoluminescence quantum yield (PLQY) of 94%, which was more than three times that of the simple parent core complex (27%). The rigid and high-triplet-energy dendrons were also found to control the intermolecular interactions that lead to the quenching of the luminescence in the solid state, and the film PLQY was found to be 60% with the emission having Commission Internationale de l'Eclairage coordinates of (0.16, 0.16). The results demonstrate that dendronization of simple chromophores can enhance their properties. Single layer neat dendrimer organic light-emitting diodes (OLEDs) had an external quantum efficiency (EQE) of 0.4% at 100 cd/m(2). Bilayer devices with an electron transport layer gave improved EQEs of up to 3.9%. Time-resolved luminescence measurements suggest that quenching of triplets by the electron transport layer used in the bilayer OLEDs limits performance.
引用
收藏
页码:16681 / 16688
页数:8
相关论文
共 49 条
[1]   Nearly 100% internal phosphorescence efficiency in an organic light-emitting device [J].
Adachi, C ;
Baldo, MA ;
Thompson, ME ;
Forrest, SR .
JOURNAL OF APPLIED PHYSICS, 2001, 90 (10) :5048-5051
[2]   Endothermic energy transfer: A mechanism for generating very efficient high-energy phosphorescent emission in organic materials [J].
Adachi, C ;
Kwong, RC ;
Djurovich, P ;
Adamovich, V ;
Baldo, MA ;
Thompson, ME ;
Forrest, SR .
APPLIED PHYSICS LETTERS, 2001, 79 (13) :2082-2084
[3]   Light-harvesting dendrimers [J].
Adronov, A ;
Fréchet, JMJ .
CHEMICAL COMMUNICATIONS, 2000, (18) :1701-1710
[4]   Solution-processable red phosphorescent dendrimers for light-emitting device applications [J].
Anthopoulos, TD ;
Frampton, MJ ;
Namdas, EB ;
Burn, PL ;
Samuel, IDW .
ADVANCED MATERIALS, 2004, 16 (06) :557-+
[5]   High-efficiency fluorescent organic light-emitting devices using a phosphorescent sensitizer [J].
Baldo, MA ;
Thompson, ME ;
Forrest, SR .
NATURE, 2000, 403 (6771) :750-753
[6]   Highly efficient phosphorescent emission from organic electroluminescent devices [J].
Baldo, MA ;
O'Brien, DF ;
You, Y ;
Shoustikov, A ;
Sibley, S ;
Thompson, ME ;
Forrest, SR .
NATURE, 1998, 395 (6698) :151-154
[7]  
Bernhard S, 2002, ADV MATER, V14, P433, DOI 10.1002/1521-4095(20020318)14:6<433::AID-ADMA433>3.0.CO
[8]  
2-W
[9]   Synthesis and characterization of phosphorescent cyclometalated platinum complexes [J].
Brooks, J ;
Babayan, Y ;
Lamansky, S ;
Djurovich, PI ;
Tsyba, I ;
Bau, R ;
Thompson, ME .
INORGANIC CHEMISTRY, 2002, 41 (12) :3055-3066
[10]   The development of light-emitting dendrimers for displays [J].
Burn, Paul L. ;
Lo, Shih-Chun ;
Samuel, Ifor D. W. .
ADVANCED MATERIALS, 2007, 19 (13) :1675-1688