A new set of analytical formulae for the computation of the bootstrap current and the neoclassical conductivity in tokamaks

被引:50
作者
Redl, A. [1 ,2 ]
Angioni, C. [1 ]
Belli, E. [3 ]
Sauter, O. [4 ]
机构
[1] Max Planck Inst Plasma Phys, D-85748 Garching, Germany
[2] Ludwig Maximilian Univ Munich, D-80539 Munich, Germany
[3] Gen Atom, POB 85608, San Diego, CA 92186 USA
[4] Ecole Polytech Fed Lausanne, CH-1015 Lausanne, Switzerland
基金
瑞士国家科学基金会;
关键词
GENERAL AXISYMMETRICAL EQUILIBRIA; ARBITRARY COLLISIONALITY; TRANSPORT; PLASMA; CODE;
D O I
10.1063/5.0012664
中图分类号
O35 [流体力学]; O53 [等离子体物理学];
学科分类号
070204 ; 080103 ; 080704 ;
摘要
A new set of analytical formulae for calculating the bootstrap current and the neoclassical conductivity in tokamak experiments is presented. Previous works comparing the widely used Sauter model with results of recently developed numerical neoclassical solvers have shown the Sauter model to be inaccurate at higher collisionalities typical of tokamak edge pedestals and in the presence of impurities. Thus, its applicability, particularly for the analysis of the highly interesting and highly complex plasma edge, is limited. For a revised set of analytical formulae, the procedure to determine the analytical formulae described by Sauter is repeated with the more accurate and more reliable numerical code NEO [E. Belli, Plasma Phys. Controlled Fusion 54, 015015 (2012)]. For the determination of the respective bootstrap current coefficient, the linearity of neoclassical transport is exploited. This new set of analytical formulae consists of the same analytical structure as the original set of analytical formulae published by Sauter [Phys. Plasmas 6, 2834 (1999); ibid. 9, 5140 (2002)] and also continues to use only three neoclassical key parameters: the fraction of trapped particles f(trap) the collisionality nu(*)(sigma), and the effective charge number Z(eff).
引用
收藏
页数:11
相关论文
共 31 条
[1]   Neoclassical transport coefficients for general axisymmetric equilibria in the banana regime (vol 7, pg 1224, 2000) [J].
Angioni, C ;
Sauter, O .
PHYSICS OF PLASMAS, 2000, 7 (07) :3122-3122
[2]   Neoclassical transport coefficients for general axisymmetric equilibria in the banana regime [J].
Angioni, C ;
Sauter, O .
PHYSICS OF PLASMAS, 2000, 7 (04) :1224-1234
[3]   Limitations of bootstrap current models [J].
Belli, E. A. ;
Candy, J. ;
Meneghini, O. ;
Osborne, T. H. .
PLASMA PHYSICS AND CONTROLLED FUSION, 2014, 56 (04)
[4]   Full linearized Fokker-Planck collisions in neoclassical transport simulations [J].
Belli, E. A. ;
Candy, J. .
PLASMA PHYSICS AND CONTROLLED FUSION, 2012, 54 (01)
[5]   An Eulerian method for the solution of the multi-species drift-kinetic equation [J].
Belli, E. A. ;
Candy, J. .
PLASMA PHYSICS AND CONTROLLED FUSION, 2009, 51 (07)
[6]   Kinetic calculation of neoclassical transport including self-consistent electron and impurity dynamics [J].
Belli, E. A. ;
Candy, J. .
PLASMA PHYSICS AND CONTROLLED FUSION, 2008, 50 (09)
[7]   DIFFUSION DRIVEN PLASMA CURRENTS AND BOOTSTRAP TOKAMAK [J].
BICKERTON, RJ ;
CONNOR, JW ;
TAYLOR, JB .
NATURE-PHYSICAL SCIENCE, 1971, 229 (04) :110-+
[8]  
Braginskii SI., 1965, TRANSPORT PROCESSES, V1, P205, DOI DOI 10.1088/0741-3335/47/10/005
[9]   The role of the density profile in the ASDEX-Upgrade pedestal structure [J].
Dunne, M. G. ;
Potzel, S. ;
Reimold, F. ;
Wischmeier, M. ;
Wolfrum, E. ;
Frassinetti, L. ;
Beurskens, M. ;
Bilkova, P. ;
Cavedon, M. ;
Fischer, R. ;
Kurzan, B. ;
Laggner, F. M. ;
McDermott, R. M. ;
Tardini, G. ;
Trier, E. ;
Viezzer, E. ;
Willensdorfer, M. .
PLASMA PHYSICS AND CONTROLLED FUSION, 2017, 59 (01)
[10]  
GALEEV AA, 1968, SOV PHYS JETP-USSR, V26, P233