Nanomedicines: Redefining traditional medicine

被引:77
作者
Lu, Weijia [1 ]
Yao, Jing [2 ]
Zhu, Xiao [1 ,3 ,4 ,5 ]
Qi, Yi [1 ,3 ,4 ,5 ]
机构
[1] Southern Marine Sci & Engn Guangdong Lab Zhanjian, Zhanjiang 524023, Peoples R China
[2] Heilongjiang Univ Chinese Med, Affiliated Hosp 1, Harbin, Peoples R China
[3] Guangdong Med Univ, Marine Biomed Res Inst, Guangdong Key Lab Res & Dev Nat Drugs, Zhanjiang 524023, Peoples R China
[4] Guangdong Med Univ, Key Lab Zhanjiang R&D Marine Microbial Resources, Zhanjiang 524023, Peoples R China
[5] Marine Biomed Res Inst Guangdong Zhanjiang, Zhanjiang 524023, Peoples R China
基金
中国国家自然科学基金;
关键词
Cancer; Nanoparticles; Nanotechnology; Targeting therapy; Review; BLACK PHOSPHORUS NANOSHEETS; IN-VIVO; DELIVERY; NANOPARTICLES; ANTICANCER; ENHANCE; ANTIBACTERIAL; NANOMATERIAL; THERAPY; MAGNETS;
D O I
10.1016/j.biopha.2020.111103
中图分类号
R-3 [医学研究方法]; R3 [基础医学];
学科分类号
1001 ;
摘要
Nanomedicines offer nanoscale drug delivery system. They offer ways of promising drug transportation, and address the issues of lack of targeting and permeability of traditional drugs. The physical and chemical properties in the domain of nanomedicine applications in vivo have not been sufficiently delivered. What's more, the metabolic of nanomedicines is not clear enough. Those factors which mentioned above determine that many nanomedicines have not yet realized clinical application due to their safety problems and in vivo efficacy. For example, they may cause immune response and cytotoxicity, as well as the ability to clear organs in vivo, the penetration ability of them and the lack of targeting ability may also cause poor efficacy of drugs in vivo. In this review, the new progresses of different kinds of nanomedicines (including gold nanoparticles, nanorobots, black phosphorus nanoparticles, brain diseases, gene editing and immunotherapy etc.) in anti-tumor, antibacterial, ocular diseases and arteriosclerosis in recent years were summarized. Their shortcomings were pointed out, and the new methods to improve the biosafety and efficacy were summarized.
引用
收藏
页数:11
相关论文
共 148 条
  • [1] The Valley of Death in anticancer drug development: a reassessment
    Adams, David J.
    [J]. TRENDS IN PHARMACOLOGICAL SCIENCES, 2012, 33 (04) : 173 - 180
  • [2] Controlling and Monitoring Intracellular Delivery of Anticancer Polymer Nanomedicines
    Battistella, Claudia
    Klok, Harm-Anton
    [J]. MACROMOLECULAR BIOSCIENCE, 2017, 17 (10)
  • [3] Aqueous Synthesis of Triphenylphosphine-Modified Gold Nanoparticles for Synergistic In Vitro and In Vivo Photothermal Chemotherapy
    Benyettou, Farah
    Nair, Anjana Ramdas
    Dho, Yaereen
    Prakasam, Thirumurugan
    Pasricha, Renu
    Whelan, Jamie
    Traboulsi, Hassan
    Mazher, Javed
    Sadler, Kirsten C.
    Trabolsi, Ali
    [J]. CHEMISTRY-A EUROPEAN JOURNAL, 2020, 26 (23) : 5270 - 5279
  • [4] Imaging-assisted nanoimmunotherapy for atherosclerosis in multiple species
    Binderup, Tina
    Duivenvoorden, Raphael
    Fay, Francois
    van Leent, Mandy M. T.
    Malkus, Joost
    Baxter, Samantha
    Ishino, Seigo
    Zhao, Yiming
    Sanchez-Gaytan, Brenda
    Teunissen, Abraham J. P.
    Frederico, Yohana C. A.
    Tang, Jun
    Carlucci, Giuseppe
    Lyashchenko, Serge
    Calcagno, Claudia
    Karakatsanis, Nicolas
    Soultanidis, Georgios
    Senders, Max L.
    Robson, Philip M.
    Mani, Venkatesh
    Ramachandran, Sarayu
    Lobatto, Mark E.
    Hutten, Barbara A.
    Granada, Juan F.
    Reiner, Thomas
    Swirski, Filip K.
    Nahrendorf, Matthias
    Kjaer, Andreas
    Fisher, Edward A.
    Fayad, Zahi A.
    Perez-Medina, Carlos
    Mulder, Willem J. M.
    [J]. SCIENCE TRANSLATIONAL MEDICINE, 2019, 11 (506)
  • [5] Cost-effectiveness of nanomedicine: estimating the real size of nano-costs
    Bosetti, Rita
    Jones, Stephen L.
    [J]. NANOMEDICINE, 2019, 14 (11) : 1367 - 1370
  • [6] Ligand-Modified Cell Membrane Enables the Targeted Delivery of Drug Nanocrystals to Glioma
    Chai, Zhilan
    Ran, Danni
    Lu, Linwei
    Zhan, Changyou
    Ruan, Huitong
    Hu, Xuefeng
    Xie, Cao
    Jiang, Kuan
    Li, Jinyang
    Zhou, Jianfen
    Wang, Jing
    Zhang, Yanyu
    Fang, Ronnie H.
    Zhang, Liangfang
    Lu, Weiyue
    [J]. ACS NANO, 2019, 13 (05) : 5591 - 5601
  • [7] Mitochondria Targeted Protein-Ruthenium Photosensitizer for Efficient Photodynamic Applications
    Chakrabortty, Sabyasachi
    Agrawalla, Bikram Keshari
    Stumper, Anne
    Veg, Naidu M.
    Fischer, Stephan
    Reichardt, Christian
    Koegler, Michael
    Dietzek, Benjamin
    Feuring-Buske, Michaela
    Buske, Christian
    Rau, Sven
    Weil, Tanja
    [J]. JOURNAL OF THE AMERICAN CHEMICAL SOCIETY, 2017, 139 (06) : 2512 - 2519
  • [8] A biodegradable nanocapsule delivers a Cas9 ribonucleoprotein complex for in vivo genome editing
    Chen, Guojun
    Abdeen, Amr A.
    Wang, Yuyuan
    Shahi, Pawan K.
    Robertson, Samantha
    Xie, Ruosen
    Suzuki, Masatoshi
    Pattnaik, Bikash R.
    Saha, Krishanu
    Gong, Shaoqin
    [J]. NATURE NANOTECHNOLOGY, 2019, 14 (10) : 974 - +
  • [9] Remote Control of Mechanical Forces via Mitochondrial-Targeted Magnetic Nanospinners for Efficient Cancer Treatment
    Chen, Mengwei
    Wu, Jiaojiao
    Ning, Peng
    Wang, Jingjing
    Ma, Zuan
    Huang, Liqun
    Plaza, Gustavo R.
    Shen, Yajing
    Xu, Chang
    Han, Yu
    Lesniak, Maciej S.
    Liu, Zhongmin
    Cheng, Yu
    [J]. SMALL, 2020, 16 (03)
  • [10] Chen T., 2019, ACS APPL MAT INTERFA, V11