Seeing it all: Convolutional network layers map the function of the human visual system

被引:172
作者
Eickenberg, Michael [1 ,3 ,4 ]
Gramfort, Alexandre [2 ,3 ]
Varoquaux, Gael [1 ,3 ]
Thirion, Bertrand [1 ,3 ]
机构
[1] Inria Saclay, Inria Parietal Team, Palaiseau, France
[2] Univ Paris Saclay, Telecom ParisTech, CNRS LTCI, Paris, France
[3] CEA Saclay, DSV, I2BM, Neurospin, Gif Sur Yvette, France
[4] Ecole Normale Super, Dept Informat, DATA Team, Paris, France
关键词
INFERIOR TEMPORAL CORTEX; HIERARCHICAL-MODELS; OBJECT RECOGNITION; NEURAL RESPONSES; NATURAL IMAGES; AREA; REPRESENTATIONS; FIELD; PERCEPTION; EXTRASTRIATE;
D O I
10.1016/j.neuroimage.2016.10.001
中图分类号
Q189 [神经科学];
学科分类号
071006 ;
摘要
Convolutional networks used for computer vision represent candidate models for the computations performed in mammalian visual systems. We use them as a detailed model of human brain activity during the viewing of natural images by constructing predictive models based on their different layers and BOLD fMRI activations. Analyzing the predictive performance across layers yields characteristic fingerprints for each visual brain region: early visual areas are better described by lower level convolutional net layers and later visual areas by higher level net layers, exhibiting a progression across ventral and dorsal streams. Our predictive model generalizes beyond brain responses to natural images. We illustrate this on two experiments, namely retinotopy and face place oppositions, by synthesizing brain activity and performing classical brain mapping upon it. The synthesis recovers the activations observed in the corresponding fMRI studies, showing that this deep encoding model captures representations of brain function that are universal across experimental paradigms.
引用
收藏
页码:184 / 194
页数:11
相关论文
共 54 条
  • [1] Neurons inmonkey visual area V2 encode combinations of orientations
    Anzai, Akiyuki
    Peng, Xinmiao
    Van Essen, David C.
    [J]. NATURE NEUROSCIENCE, 2007, 10 (10) : 1313 - 1321
  • [2] Benjamini Y.Hochberg., 1995, Controlling the false discovery rate: a practical and powerful approach to multiple testing, P289, DOI DOI 10.1111/J.2517-6161.1995.TB02031.X
  • [3] Electrophysiological studies of face perception in humans
    Bentin, S
    Allison, T
    Puce, A
    Perez, E
    McCarthy, G
    [J]. JOURNAL OF COGNITIVE NEUROSCIENCE, 1996, 8 (06) : 551 - 565
  • [4] The Role of Transverse Occipital Sulcus in Scene Perception and Its Relationship to Object Individuation in Inferior Intraparietal Sulcus
    Bettencourt, Katherine C.
    Xu, Yaoda
    [J]. JOURNAL OF COGNITIVE NEUROSCIENCE, 2013, 25 (10) : 1711 - 1722
  • [5] Invariant Scattering Convolution Networks
    Bruna, Joan
    Mallat, Stephane
    [J]. IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE, 2013, 35 (08) : 1872 - 1886
  • [6] Deep Neural Networks Rival the Representation of Primate IT Cortex for Core Visual Object Recognition
    Cadieu, Charles F.
    Hong, Ha
    Yamins, Daniel L. K.
    Pinto, Nicolas
    Ardila, Diego
    Solomon, Ethan A.
    Majaj, Najib J.
    DiCarlo, James J.
    [J]. PLOS COMPUTATIONAL BIOLOGY, 2014, 10 (12)
  • [8] DESIMONE R, 1984, J NEUROSCI, V4, P2051
  • [9] A cortical area selective for visual processing of the human body
    Downing, PE
    Jiang, YH
    Shuman, M
    Kanwisher, N
    [J]. SCIENCE, 2001, 293 (5539) : 2470 - 2473
  • [10] Second order scattering descriptors predict fMRI activity due to visual textures
    Eickenberg, Michael
    Senoussi, Mehdi
    Pedregosa, Fabian
    Gramfort, Alexandre
    Thirion, Bertrand
    [J]. 2013 3RD INTERNATIONAL WORKSHOP ON PATTERN RECOGNITION IN NEUROIMAGING (PRNI 2013), 2013, : 5 - 8