Quantum-Mechanical Scattering Problem in Lobachevsky Space at Low Energies

被引:1
作者
Kurochkin, Yu A. [1 ]
Otchik, V. S. [2 ]
Shaikovskaya, N. D. [1 ]
Shoukavy, Dz, V [1 ]
机构
[1] NAS Belarus, BI Stepanov Inst Phys, 68 Nezavisimosti Ave, Minsk 220072, BELARUS
[2] Minist Emergency Serv Belarus, Civil Protect Univ, 25 Mashinostroitelei Str, Minsk 220118, BELARUS
来源
NONLINEAR PHENOMENA IN COMPLEX SYSTEMS | 2022年 / 25卷 / 03期
关键词
low energy scattering; Lobachevsky space; length of scattering; radius of scattering; scattering cross section;
D O I
10.33581/1561-4085-2022-25-3-245-253
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
Based on the use of the asymptotics for the wave function of a scattered particle in a Lobachevsky space in a form close to the asymptotics in flat space, general formulas for the theory of quantum mechanical scattering in this space are derived. This approach makes it possible to represent the basic formulas of the theory of scattering in the Lobachevsky space in the form that coincides with the corresponding expressions in three-dimensional Euclidean space. We offer quantities (length of scattering, effective scattering radius), that are used in describing scattering at short-range potentials and are convenient as phenomenological parameters in describing nuclear interactions at low energies. Numerical estimates of these quantities and cross sections at low energies, that are characteristic of nuclear physics, are given.
引用
收藏
页码:245 / 253
页数:9
相关论文
共 18 条
  • [1] Bethe H., 2006, ELEMENTARY THEORY NU
  • [2] Bogush A. A., 2003, Nonlinear Phenomena in Complex Systems, V6, P894
  • [3] Bogush A.A., 2003, DOKL AKAD NAUK BELAR, V5, P54
  • [4] Bogush A.A., 2004, INT PROC INT C BOLYA, P49
  • [5] Bogush A.A., 2004, P INT SEMINAR DEDICA, P179
  • [6] Davydov A.S., 1963, QUANTUM MECH
  • [7] Model of excitations in quantum dots based on quantum mechanics in spaces of constant curvature
    Gritsev, VV
    Kurochkin, YA
    [J]. PHYSICAL REVIEW B, 2001, 64 (03) : 0353081 - 0353089
  • [8] IZMESTEV AA, 1990, SOV J NUCL PHYS+, V52, P1068
  • [9] Kadyshevskii V. G., 1972, PART NUCL, V2, P635
  • [10] Kadyshevskii V.G., 1969, QUASIPOTENTIAL METHO