Integrable noncommutative equations on quad-graphs. The consistency approach

被引:35
作者
Bobenko, AI [1 ]
Suris, YB [1 ]
机构
[1] Tech Univ Berlin, Inst Math, D-10623 Berlin, Germany
关键词
discrete integrable systems; noncommutative integrable systems; three-dimensional consistency; zero curvature representation;
D O I
10.1023/A:1021249131979
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
We extend integrable systems on quad-graphs, such as the Hirota equation and the cross-ratio equation, to the noncommutative context, when the fields take values in an arbitrary associative algebra. We demonstrate that the three-dimensional consistency property remains valid in this case. We derive the noncommutative zero curvature representations for these systems, based on the latter property. Quantum systems with their quantum zero curvature representations are particular cases of the general noncommutative ones.
引用
收藏
页码:241 / 254
页数:14
相关论文
共 18 条
[1]  
ADLER VE, SI0202024
[2]  
Bobenko A, 1996, J REINE ANGEW MATH, V475, P187
[3]  
Bobenko AI, 2002, INT MATH RES NOTICES, V2002, P573
[4]   COMPLETE-INTEGRABILITY OF LAGRANGIAN MAPPINGS AND LATTICES OF KDV TYPE [J].
CAPEL, HW ;
NIJHOFF, FW ;
PAPAGEORGIOU, VG .
PHYSICS LETTERS A, 1991, 155 (6-7) :377-387
[5]  
Etingof P, 1997, MATH RES LETT, V4, P413
[6]  
Etingof P, 1998, MATH RES LETT, V5, P1
[7]   HIROTA EQUATION AS AN EXAMPLE OF AN INTEGRABLE SYMPLECTIC MAP [J].
FADDEEV, L ;
VOLKOV, AY .
LETTERS IN MATHEMATICAL PHYSICS, 1994, 32 (02) :125-135
[8]   Strongly coupled quantum discrete Liouville theory. I: Algebraic approach and duality [J].
Faddeev, LD ;
Kashaev, RM ;
Volkov, AY .
COMMUNICATIONS IN MATHEMATICAL PHYSICS, 2001, 219 (01) :199-219
[9]  
GELFAND I, 1997, SELECTA MATH, V3, P517
[10]  
Hertrich-Jeromin U, 1999, OXF LEC S MATH APPL, V16, P59