ALMOST SURE CENTRAL LIMIT THEOREMS FOR RANDOM RATIOS AND APPLICATIONS TO LSE FOR FRACTIONAL ORNSTEIN-UHLENBECK PROCESSES

被引:0
作者
Cenac, Peggy [1 ]
Es-Sebaiy, Khalifa [2 ]
机构
[1] Univ Bourgogne, Inst Math Bourgogne, 9 Rue Alain Savary, F-21078 Dijon, France
[2] Cadi Ayyad Univ, Natl Sch Appl Sci Marrakesh, Gueliz, Marrakesh, Morocco
来源
PROBABILITY AND MATHEMATICAL STATISTICS-POLAND | 2015年 / 35卷 / 02期
关键词
Almost sure central limit theorem; least squares estimator; fractional Ornstein-Uhlenbeck process; multiple stochastic integrals; CONVERGENCE;
D O I
暂无
中图分类号
O21 [概率论与数理统计]; C8 [统计学];
学科分类号
020208 ; 070103 ; 0714 ;
摘要
We will investigate an almost sure central limit theorem (ASCLT) for sequences of random variables having the form of a ratio of two terms such that the numerator satisfies the ASCLT and the denominator is a positive term which converges almost surely to one. This result leads to the ASCLT for least squares estimators for Ornstein-Uhlenbeck process driven by fractional Brownian motion.
引用
收藏
页码:285 / 300
页数:16
相关论文
共 16 条