Quasi-Operational Testing of Real-Time Storm-Longevity Prediction via Machine Learning

被引:10
作者
McGovern, Amy [1 ]
Karstens, Christopher D. [2 ]
Smith, Travis [1 ,3 ]
Lagerquist, Ryan [1 ,4 ]
机构
[1] Univ Oklahoma, Norman, OK 73019 USA
[2] NOAA, Natl Weather Serv, Storm Predict Ctr, Norman, OK USA
[3] Natl Severe Storms Lab, Cooperat Inst Mesoscale Meteorol Studies, Norman, OK 73069 USA
[4] Cooperat Inst Mesoscale Meteorol Studies, Norman, OK USA
关键词
Statistical techniques; Statistical forecasting; Artificial intelligence; Decision trees; Machine learning; Regression; SEVERE WEATHER; CONVECTION; MODEL; SHEAR; IDENTIFICATION; DEPENDENCE; REGRESSION; INITIATION; SELECTION;
D O I
10.1175/WAF-D-18-0141.1
中图分类号
P4 [大气科学(气象学)];
学科分类号
0706 ; 070601 ;
摘要
Real-time prediction of storm longevity is a critical challenge for National Weather Service (NWS) forecasters. These predictions can guide forecasters when they issue warnings and implicitly inform them about the potential severity of a storm. This paper presents a machine-learning (ML) system that was used for real-time prediction of storm longevity in the Probabilistic Hazard Information (PHI) tool, making it a Research-to-Operations (R2O) project. Currently, PHI provides forecasters with real-time storm variables and severity predictions from the ProbSevere system, but these predictions do not include storm longevity. We specifically designed our system to be tested in PHI during the 2016 and 2017 Hazardous Weather Testbed (HWT) experiments, which are a quasi-operational naturalistic environment. We considered three ML methods that have proven in prior work to be strong predictors for many weather prediction tasks: elastic nets, random forests, and gradient-boosted regression trees. We present experiments comparing the three ML methods with different types of input data, discuss trade-offs between forecast quality and requirements for real-time deployment, and present both subjective (human-based) and objective evaluation of real-time deployment in the HWT. Results demonstrate that the ML system has lower error than human forecasters, which suggests that it could be used to guide future storm-based warnings, enabling forecasters to focus on other aspects of the warning system.
引用
收藏
页码:1437 / 1451
页数:15
相关论文
共 64 条
[1]  
[Anonymous], 2016, 14 C ART COMP INT IT
[2]   A North American Hourly Assimilation and Model Forecast Cycle: The Rapid Refresh [J].
Benjamin, Stanley G. ;
Weygandt, Stephen S. ;
Brown, John M. ;
Hu, Ming ;
Alexander, Curtis R. ;
Smirnova, Tatiana G. ;
Olson, Joseph B. ;
James, Eric P. ;
Dowell, David C. ;
Grell, Georg A. ;
Lin, Haidao ;
Peckham, Steven E. ;
Smith, Tracy Lorraine ;
Moninger, William R. ;
Kenyon, Jaymes S. ;
Manikin, Geoffrey S. .
MONTHLY WEATHER REVIEW, 2016, 144 (04) :1669-1694
[3]   SHARPpy An Open-Source Sounding Analysis Toolkit for the Atmospheric Sciences [J].
Blumberg, William G. ;
Halbert, Kelton T. ;
Supinie, Timothy A. ;
Marshsh, Patrick T. ;
Thompson, Richard L. ;
Hart, Johohn A. .
BULLETIN OF THE AMERICAN METEOROLOGICAL SOCIETY, 2017, 98 (08) :1625-1636
[4]   Random forests [J].
Breiman, L .
MACHINE LEARNING, 2001, 45 (01) :5-32
[5]  
Brooks H.E., 1992, Fourth AES/CMOS Workshop on Operational Meteorology, P398
[6]  
Bunkers M., 2002, 21 C SEV LOC STORMS, V16
[7]   An Empirical Model for Assessing the Severe Weather Potential of Developing Convection [J].
Cintineo, John L. ;
Pavolonis, Michael J. ;
Sieglaff, Justin M. ;
Lindsey, Daniel T. .
WEATHER AND FORECASTING, 2014, 29 (03) :639-653
[8]   On the Predictability of Supercell Thunderstorm Evolution [J].
Cintineo, Rebecca M. ;
Stensrud, David J. .
JOURNAL OF THE ATMOSPHERIC SCIENCES, 2013, 70 (07) :1993-2011
[9]   An Automated, Multiparameter Dryline Identification Algorithm [J].
Clark, Adam J. ;
MacKenzie, Andrew ;
McGovern, Amy ;
Lakshmanan, Valliappa ;
Brown, Rodger A. .
WEATHER AND FORECASTING, 2015, 30 (06) :1781-1794
[10]   AN OVERVIEW OF THE 2010 HAZARDOUS WEATHER TESTBED EXPERIMENTAL FORECAST PROGRAM SPRING EXPERIMENT [J].
Clark, Adam J. ;
Weiss, Steven J. ;
Kain, John S. ;
Jirak, Israel L. ;
Coniglio, Michael ;
Melick, Christopher J. ;
Siewert, Christopher ;
Sobash, Ryan A. ;
Marsh, Patrick T. ;
Dean, Andrew R. ;
Xue, Ming ;
Kong, Fanyou ;
Thomas, Kevin W. ;
Wang, Yunheng ;
Brewster, Keith ;
Gao, Jidong ;
Wang, Xuguang ;
Du, Jun ;
Novak, David R. ;
Barthold, Faye E. ;
Bodner, Michael J. ;
Levit, Jason J. ;
Entwistle, C. Bruce ;
Jensen, Tara L. ;
Correia, James, Jr. .
BULLETIN OF THE AMERICAN METEOROLOGICAL SOCIETY, 2012, 93 (01) :55-74