Spherical maximal operator on symmetric spaces of constant curvature

被引:3
作者
Nevo, A [1 ]
Ratnakumar, PK [1 ]
机构
[1] Technion Israel Inst Technol, Inst Adv Studies Math, IL-32900 Haifa, Israel
关键词
symmetric spaces; constant curvature; spherical means; maximal function;
D O I
10.1090/S0002-9947-02-03095-7
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We prove an endpoint weak-type maximal inequality for the spherical maximal operator applied to radial funcions on symmetric spaces of constant curvature and dimension n greater than or equal to 2. More explicitly, in the Lorentz space associated with the natural isometry-invariant measure, we show that, for every radial function f, parallel toMfparallel to(n', infinity) less than or equal to C(n)parallel tofparallel to(n'), n' = n/n-1. The proof uses only geometric arguments and volume estimates, and applies uniformly in every dimension.
引用
收藏
页码:1167 / 1182
页数:16
相关论文
共 26 条
[1]  
[Anonymous], 1984, EIGENVALUES RIEMANNI
[2]  
BENNETT C, 1988, PURE APPL MATH, V129
[3]  
BOURGAIN J, 1985, CR ACAD SCI I-MATH, V301, P499
[4]   AVERAGES IN THE PLANE OVER CONVEX CURVES AND MAXIMAL OPERATORS [J].
BOURGAIN, J .
JOURNAL D ANALYSE MATHEMATIQUE, 1986, 47 :69-85
[5]   Uniform estimates for spherical functions on complex semisimple Lie groups [J].
Cowling, M ;
Nevo, A .
GEOMETRIC AND FUNCTIONAL ANALYSIS, 2001, 11 (05) :900-932
[6]  
COWLING M, 1981, P SEM HARM AN PIS S, V1, P21
[7]   CONVOLUTION STRUCTURE FOR JACOBI FUNCTION EXPANSIONS [J].
FLENSTEDJENSEN, M ;
KOORNWINDER, T .
ARKIV FOR MATEMATIK, 1973, 11 (02) :245-262
[8]  
Helgason S., 1979, Differential geometry, Lie groups and symmetric spaces
[9]  
HELGASON S, 1994, AM MATH SOC MATH SUR, V39
[10]  
Hicks N-J., 1965, NOTES DIFFERENTIAL G