Analysis of the direct Fourier method for computer tomography

被引:24
作者
Waldén, J [1 ]
机构
[1] Yale Univ, Dept Math, New Haven, CT 06520 USA
关键词
computer tomography; direct Fourier method; radon transform;
D O I
10.1109/42.845179
中图分类号
TP39 [计算机的应用];
学科分类号
081203 ; 0835 ;
摘要
We develop a direct Fourier method (DFM) for reconstructing a function from its X-ray projections. We introduce a framework that can be used to get a quantitative comparison between different choices of basis functions in the step of resampling from polar to Cartesian coordinates, We use the framework to compare polynomial interpolation, approximated sine -functions, Gaussians, splines, and Kaiser-Bessel functions, The resulting algorithm is very fast, requiring 12.5N(2) log(2) N + 49N(2) flops. Numerical experiments show it to be efficient.
引用
收藏
页码:211 / 222
页数:12
相关论文
共 17 条
[1]  
Akhiezer N. I., 1962, The calculus of variations
[2]   ON THE FAST FOURIER-TRANSFORM OF FUNCTIONS WITH SINGULARITIES [J].
BEYLKIN, G .
APPLIED AND COMPUTATIONAL HARMONIC ANALYSIS, 1995, 2 (04) :363-381
[3]  
BRANDT A, 1997, WIGC6 WEIZM I SCI
[4]  
Chui C.K., 1992, An introduction to wavelets, V1, DOI DOI 10.1109/99.388960
[5]   IMAGE-RECONSTRUCTION FROM LINOGRAMS - IMPLEMENTATION AND EVALUATION [J].
EDHOLM, P ;
HERMAN, GT ;
ROBERTS, DA .
IEEE TRANSACTIONS ON MEDICAL IMAGING, 1988, 7 (03) :239-246
[6]   LINOGRAMS IN IMAGE-RECONSTRUCTION FROM PROJECTIONS [J].
EDHOLM, PR ;
HERMAN, GT .
IEEE TRANSACTIONS ON MEDICAL IMAGING, 1987, 6 (04) :301-307
[7]  
GOTTLIEB D, 1998, 207 UPPS U DEP SCI C, P207
[8]   Mathematics for computer tomography [J].
Gustafsson, B .
PHYSICA SCRIPTA, 1996, T61 :38-43
[9]  
Hormander L., 1990, Distribution theory and Fourier analysis, VI
[10]   RECONSTRUCTION ALGORITHMS - TRANSFORM METHODS [J].
LEWITT, RM .
PROCEEDINGS OF THE IEEE, 1983, 71 (03) :390-408