Population Markov Chain Monte Carlo

被引:53
|
作者
Laskey, KB
Myers, JW
机构
[1] George Mason Univ, Dept Syst Engn & Operat Res, Fairfax, VA 22030 USA
[2] TRW Co Inc, Reston, VA 20190 USA
关键词
Markov chain Monte Carlo; Metropolis-Hastings algorithm; graphical probabilistic models; Bayesian networks; Bayesian learning; evolutionary algorithms;
D O I
10.1023/A:1020206129842
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
Stochastic search algorithms inspired by physical and biological systems are applied to the problem of learning directed graphical probability models in the presence of missing observations and hidden variables. For this class of problems, deterministic search algorithms tend to halt at local optima, requiring random restarts to obtain solutions of acceptable quality. We compare three stochastic search algorithms: a Metropolis-Hastings Sampler (MHS), an Evolutionary Algorithm (EA), and a new hybrid algorithm called Population Markov Chain Monte Carlo, or popMCMC. PopMCMC uses statistical information from a population of MHSs to inform the proposal distributions for individual samplers in the population. Experimental results show that popMCMC and EAs learn more efficiently than the MHS with no information exchange. Populations of MCMC samplers exhibit more diversity than populations evolving according to EAs not satisfying physics-inspired local reversibility conditions.
引用
收藏
页码:175 / 196
页数:22
相关论文
共 50 条
  • [41] Markov Chain Monte Carlo and Databases (Abstract)
    Koch, Christoph
    SCALABLE UNCERTAINTY MANAGEMENT, SUM 2010, 2010, 6379 : 1 - 1
  • [42] Nonparametric Involutive Markov Chain Monte Carlo
    Mak, Carol
    Zaiser, Fabian
    Ong, Luke
    INTERNATIONAL CONFERENCE ON MACHINE LEARNING, VOL 162, 2022,
  • [43] A Quantum Parallel Markov Chain Monte Carlo
    Holbrook, Andrew J.
    JOURNAL OF COMPUTATIONAL AND GRAPHICAL STATISTICS, 2023, 32 (04) : 1402 - 1415
  • [44] Hypothesis testing for Markov chain Monte Carlo
    Benjamin M. Gyori
    Daniel Paulin
    Statistics and Computing, 2016, 26 : 1281 - 1292
  • [45] Markov Chain Monte Carlo confidence intervals
    Atchade, Yves F.
    BERNOULLI, 2016, 22 (03) : 1808 - 1838
  • [46] Markov Chain Monte Carlo Random Testing
    Zhou, Bo
    Okamura, Hiroyuki
    Dohi, Tadashi
    ADVANCES IN COMPUTER SCIENCE AND INFORMATION TECHNOLOGY, PROCEEDINGS, 2010, 6059 : 447 - 456
  • [47] An introduction to the Markov chain Monte Carlo method
    Wang, Wenlong
    AMERICAN JOURNAL OF PHYSICS, 2022, 90 (12) : 921 - 934
  • [48] MARGINAL MARKOV CHAIN MONTE CARLO METHODS
    van Dyk, David A.
    STATISTICA SINICA, 2010, 20 (04) : 1423 - 1454
  • [49] Analyzing Markov chain Monte Carlo output
    Vats, Dootika
    Robertson, Nathan
    Flegal, James M.
    Jones, Galin L.
    WILEY INTERDISCIPLINARY REVIEWS-COMPUTATIONAL STATISTICS, 2020, 12 (04):
  • [50] Interacting Particle Markov Chain Monte Carlo
    Rainforth, Tom
    Naesseth, Christian A.
    Lindsten, Fredrik
    Paige, Brooks
    van de Meent, Jan-Willem
    Doucet, Arnaud
    Wood, Frank
    INTERNATIONAL CONFERENCE ON MACHINE LEARNING, VOL 48, 2016, 48