Population Markov Chain Monte Carlo

被引:53
|
作者
Laskey, KB
Myers, JW
机构
[1] George Mason Univ, Dept Syst Engn & Operat Res, Fairfax, VA 22030 USA
[2] TRW Co Inc, Reston, VA 20190 USA
关键词
Markov chain Monte Carlo; Metropolis-Hastings algorithm; graphical probabilistic models; Bayesian networks; Bayesian learning; evolutionary algorithms;
D O I
10.1023/A:1020206129842
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
Stochastic search algorithms inspired by physical and biological systems are applied to the problem of learning directed graphical probability models in the presence of missing observations and hidden variables. For this class of problems, deterministic search algorithms tend to halt at local optima, requiring random restarts to obtain solutions of acceptable quality. We compare three stochastic search algorithms: a Metropolis-Hastings Sampler (MHS), an Evolutionary Algorithm (EA), and a new hybrid algorithm called Population Markov Chain Monte Carlo, or popMCMC. PopMCMC uses statistical information from a population of MHSs to inform the proposal distributions for individual samplers in the population. Experimental results show that popMCMC and EAs learn more efficiently than the MHS with no information exchange. Populations of MCMC samplers exhibit more diversity than populations evolving according to EAs not satisfying physics-inspired local reversibility conditions.
引用
收藏
页码:175 / 196
页数:22
相关论文
共 50 条
  • [31] Analyzing Markov chain Monte Carlo output
    Vats, Dootika
    Robertson, Nathan
    Flegal, James M.
    Jones, Galin L.
    WILEY INTERDISCIPLINARY REVIEWS-COMPUTATIONAL STATISTICS, 2020, 12 (04):
  • [32] Markov Chain Monte Carlo Random Testing
    Zhou, Bo
    Okamura, Hiroyuki
    Dohi, Tadashi
    ADVANCES IN COMPUTER SCIENCE AND INFORMATION TECHNOLOGY, PROCEEDINGS, 2010, 6059 : 447 - 456
  • [33] Rao-Blackwellisation in the Markov Chain Monte Carlo Era
    Robert, Christian P.
    Roberts, Gareth
    INTERNATIONAL STATISTICAL REVIEW, 2021, 89 (02) : 237 - 249
  • [34] Markov chain Monte Carlo exact inference for social networks
    McDonald, John W.
    Smith, Peter W. F.
    Forster, Jonathan J.
    SOCIAL NETWORKS, 2007, 29 (01) : 127 - 136
  • [35] Joint Estimation of Pedigrees and Effective Population Size Using Markov Chain Monte Carlo
    Ko, Amy
    Nielsen, Rasmus
    GENETICS, 2019, 212 (03) : 855 - 868
  • [36] Parameter Estimation in Population Balance through Bayesian Technique Markov Chain Monte Carlo
    Moura, Carlos H. R.
    Viegas, Bruno M.
    Tavares, Maria R. M.
    Macedo, Emanuel N.
    Estumano, Diego C.
    Quaresma, Joao N. N.
    JOURNAL OF APPLIED AND COMPUTATIONAL MECHANICS, 2021, 7 (02): : 890 - 901
  • [37] Study on prestack seismic inversion using Markov Chain Monte Carlo
    Zhang Guang-Zhi
    Wang Dan-Yang
    Yin Xing-Yao
    Li Ning
    CHINESE JOURNAL OF GEOPHYSICS-CHINESE EDITION, 2011, 54 (11): : 2926 - 2932
  • [38] A simulation approach to convergence rates for Markov chain Monte Carlo algorithms
    Cowles, MK
    Rosenthal, JS
    STATISTICS AND COMPUTING, 1998, 8 (02) : 115 - 124
  • [39] LOCAL DEGENERACY OF MARKOV CHAIN MONTE CARLO METHODS
    Kamatani, Kengo
    ESAIM-PROBABILITY AND STATISTICS, 2014, 18 : 713 - 725
  • [40] Bayesian Computation Via Markov Chain Monte Carlo
    Craiu, Radu V.
    Rosenthal, Jeffrey S.
    ANNUAL REVIEW OF STATISTICS AND ITS APPLICATION, VOL 1, 2014, 1 : 179 - 201