Population Markov Chain Monte Carlo

被引:53
|
作者
Laskey, KB
Myers, JW
机构
[1] George Mason Univ, Dept Syst Engn & Operat Res, Fairfax, VA 22030 USA
[2] TRW Co Inc, Reston, VA 20190 USA
关键词
Markov chain Monte Carlo; Metropolis-Hastings algorithm; graphical probabilistic models; Bayesian networks; Bayesian learning; evolutionary algorithms;
D O I
10.1023/A:1020206129842
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
Stochastic search algorithms inspired by physical and biological systems are applied to the problem of learning directed graphical probability models in the presence of missing observations and hidden variables. For this class of problems, deterministic search algorithms tend to halt at local optima, requiring random restarts to obtain solutions of acceptable quality. We compare three stochastic search algorithms: a Metropolis-Hastings Sampler (MHS), an Evolutionary Algorithm (EA), and a new hybrid algorithm called Population Markov Chain Monte Carlo, or popMCMC. PopMCMC uses statistical information from a population of MHSs to inform the proposal distributions for individual samplers in the population. Experimental results show that popMCMC and EAs learn more efficiently than the MHS with no information exchange. Populations of MCMC samplers exhibit more diversity than populations evolving according to EAs not satisfying physics-inspired local reversibility conditions.
引用
收藏
页码:175 / 196
页数:22
相关论文
共 50 条
  • [1] Population Markov Chain Monte Carlo
    Kathryn Blackmond Laskey
    James W. Myers
    Machine Learning, 2003, 50 : 175 - 196
  • [2] The pharmacokinetics of saquinavir: A Markov chain Monte Carlo population analysis
    Lunn, DJ
    Aarons, L
    JOURNAL OF PHARMACOKINETICS AND BIOPHARMACEUTICS, 1998, 26 (01): : 47 - 74
  • [3] Segmentation Using Population based Markov Chain Monte Carlo
    Wang, Xiangrong
    2013 NINTH INTERNATIONAL CONFERENCE ON NATURAL COMPUTATION (ICNC), 2013, : 184 - 188
  • [4] The Pharmacokinetics of Saquinavir: A Markov Chain Monte Carlo Population Analysis
    David J. Lunn
    Leon Aarons
    Journal of Pharmacokinetics and Biopharmaceutics, 1998, 26 : 47 - 74
  • [5] Optimal Markov chain Monte Carlo sampling
    Chen, Ting-Li
    WILEY INTERDISCIPLINARY REVIEWS-COMPUTATIONAL STATISTICS, 2013, 5 (05) : 341 - 348
  • [6] Markov Chain Monte Carlo in small worlds
    Guan, YT
    Fleissner, R
    Joyce, P
    Krone, SM
    STATISTICS AND COMPUTING, 2006, 16 (02) : 193 - 202
  • [7] Markov Chain Monte Carlo in small worlds
    Yongtao Guan
    Roland Fleißner
    Paul Joyce
    Stephen M. Krone
    Statistics and Computing, 2006, 16 : 193 - 202
  • [8] Monte Carlo integration with Markov chain
    Tan, Zhiqiang
    JOURNAL OF STATISTICAL PLANNING AND INFERENCE, 2008, 138 (07) : 1967 - 1980
  • [9] Markov Chain Monte Carlo in Practice
    Jones, Galin L.
    Qin, Qian
    ANNUAL REVIEW OF STATISTICS AND ITS APPLICATION, 2022, 9 : 557 - 578
  • [10] Structured Markov chain Monte Carlo
    Sargent, DJ
    Hodges, JS
    Carlin, BP
    JOURNAL OF COMPUTATIONAL AND GRAPHICAL STATISTICS, 2000, 9 (02) : 217 - 234