Stochastic delay population systems

被引:27
作者
Hung, Li-Chu [1 ]
机构
[1] Natl Kaohsiung Hospitality Coll, Kaohsiung, Taiwan
关键词
stochastic delay Lotka-Volterra model; Ito's formula; ultimate boundedness; extinction; PERSISTENCE; STABILITY;
D O I
10.1080/00036810903277093
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In this article we stochastically perturb the classical non-autonomous delay Lotka-Volterra model [image omitted] into the stochastic delay population system (SDPS) [image omitted] Different from most of the existing papers [A. Bahar and X. Mao, Stochastic delay Lotka-Volterra model, J. Math. Anal. Appl. 292 (2004), 364-380, A. Bahar and X. Mao, Stochastic delay population dynamics, J. Pure Appl. Math. 11 (2004), 377-400, X. Mao, Delay population dynamics and environmental noise, Stochastics Dyn. 5(2) (2005), pp. 149-162], the system parameters in this article are time-dependent. We will give a sufficient condition under which the SDPS will have a unique global positive solution. We will then establish some new asymptotic properties for the moments of the solution. In particular, we will discuss two fundamental problems in population systems, namely ultimate boundedness and extinction.
引用
收藏
页码:1303 / 1320
页数:18
相关论文
共 22 条
[1]   ASYMPTOTICALLY PERIODIC-SOLUTIONS OF N-COMPETING SPECIES PROBLEM WITH TIME DELAYS [J].
AHMAD, S ;
RAO, MRM .
JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 1994, 186 (02) :559-571
[2]  
[Anonymous], 1992, MATH ITS APPL SOVIET
[3]  
[Anonymous], 2007, STOCHASTIC DIFFERENT
[4]   Stochastic delay Lotka-Volterra model [J].
Bahar, A ;
Mao, XR .
JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 2004, 292 (02) :364-380
[5]  
Bahar A., 2004, Int. J. Pure Appl. Math., V11, P377
[6]   Global asymptotic stability in a nonautonomous Lotka-Volterra type system with infinite delay [J].
Bereketoglu, H ;
Gyori, I .
JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 1997, 210 (01) :279-291
[7]   UNIFORM PERSISTENCE IN FUNCTIONAL-DIFFERENTIAL EQUATIONS [J].
FREEDMAN, HI ;
RUAN, SG .
JOURNAL OF DIFFERENTIAL EQUATIONS, 1995, 115 (01) :173-192
[8]  
Gard T. C., 1988, INTRO STOCHASTIC DIF
[10]   PERSISTENCE IN STOCHASTIC FOOD WEB MODELS [J].
GARD, TC .
BULLETIN OF MATHEMATICAL BIOLOGY, 1984, 46 (03) :357-370