Estimation of microscope drift using fluorescent nanodiamonds as fiducial markers

被引:21
作者
Colomb, W. [1 ]
Czerski, J. [1 ]
Sau, J. D. [2 ]
Sarkar, S. K. [1 ]
机构
[1] Colorado Sch Mines, Dept Phys, 1500 Illinois St, Golden, CO 80401 USA
[2] Univ Maryland, Dept Phys, College Pk, MD 20742 USA
关键词
Fiducial markers; fluorescent nanodiamonds; generalized maximum likelihood method; microscope drift; MAXIMUM-LIKELIHOOD-ESTIMATION; SINGLE-MOLECULE MEASUREMENTS; NITROGEN-VACANCY CENTERS; PARTICLE TRACKING; HIGH-RESOLUTION; SUPERRESOLUTION MICROSCOPY; NANOMETER LOCALIZATION; OPTICAL MICROSCOPE; STAGE DRIFT; ACCURACY;
D O I
10.1111/jmi.12539
中图分类号
TH742 [显微镜];
学科分类号
摘要
Fiducial markers are used to correct the microscope drift and should be photostable, be usable at multiple wavelengths and be compatible for multimodal imaging. Fiducial markers such as beads, gold nanoparticles, microfabricated patterns and organic fluorophores lack one or more of these criteria. Moreover, the localization accuracy and drift correction can be degraded by other fluorophores, instrument noise and artefacts due to image processing and tracking algorithms. Estimating mechanical drift by assuming Gaussian distributed noise is not suitable under these circumstances. Here we present a method that uses fluorescent nanodiamonds as fiducial markers and uses an improved maximum likelihood algorithm to estimate the drift with both accuracy and precision within the range 1.55-5.75 nm.
引用
收藏
页码:298 / 306
页数:9
相关论文
共 66 条
[1]   Reducing image distortions due to temperature-related microscope stage drift [J].
Adler, J ;
Pagakis, SN .
JOURNAL OF MICROSCOPY-OXFORD, 2003, 210 :131-137
[2]   Nanoscale imaging magnetometry with diamond spins under ambient conditions [J].
Balasubramanian, Gopalakrishnan ;
Chan, I. Y. ;
Kolesov, Roman ;
Al-Hmoud, Mohannad ;
Tisler, Julia ;
Shin, Chang ;
Kim, Changdong ;
Wojcik, Aleksander ;
Hemmer, Philip R. ;
Krueger, Anke ;
Hanke, Tobias ;
Leitenstorfer, Alfred ;
Bratschitsch, Rudolf ;
Jelezko, Fedor ;
Wrachtrup, Joerg .
NATURE, 2008, 455 (7213) :648-U46
[3]   Imaging intracellular fluorescent proteins at nanometer resolution [J].
Betzig, Eric ;
Patterson, George H. ;
Sougrat, Rachid ;
Lindwasser, O. Wolf ;
Olenych, Scott ;
Bonifacino, Juan S. ;
Davidson, Michael W. ;
Lippincott-Schwartz, Jennifer ;
Hess, Harald F. .
SCIENCE, 2006, 313 (5793) :1642-1645
[4]   Three-dimensional nanometre localization of nanoparticles to enhance super-resolution microscopy [J].
Bon, Pierre ;
Bourg, Nicolas ;
Lecart, Sandrine ;
Monneret, Serge ;
Fort, Emmanuel ;
Wenger, Jerome ;
Leveque-Fort, Sandrine .
NATURE COMMUNICATIONS, 2015, 6
[5]  
Bradac C, 2010, NAT NANOTECHNOL, V5, P345, DOI [10.1038/nnano.2010.56, 10.1038/NNANO.2010.56]
[6]   Silica Encapsulation of Fluorescent Nanodiamonds for Colloidal Stability and Facile Surface Functionalization [J].
Bumb, Ambika ;
Sarkar, Susanta K. ;
Billington, Neil ;
Brechbiel, Martin W. ;
Neuman, Keir C. .
JOURNAL OF THE AMERICAN CHEMICAL SOCIETY, 2013, 135 (21) :7815-7818
[7]  
Bumb A, 2011, BIOMED OPT EXPRESS, V2, P2761, DOI 10.1364/BOE.2.002761
[8]   Position control and optical manipulation for nanotechnology applications [J].
Capitanio, M ;
Cicchi, R ;
Pavone, FS .
EUROPEAN PHYSICAL JOURNAL B, 2005, 46 (01) :1-8
[9]   Stabilization of an optical microscope to 0.1 nm in three dimensions [J].
Carter, Ashley R. ;
King, Gavin M. ;
Ulrich, Theresa A. ;
Halsey, Wayne ;
Alchenberger, David ;
Perkins, Thomas T. .
APPLIED OPTICS, 2007, 46 (03) :421-427
[10]   Quantitative comparison of algorithms for tracking single fluorescent particles [J].
Cheezum, MK ;
Walker, WF ;
Guilford, WH .
BIOPHYSICAL JOURNAL, 2001, 81 (04) :2378-2388