The Kundu-Eckhaus equation and its discretizations

被引:49
作者
Levi, Decio [1 ,2 ]
Scimiterna, Christian [1 ]
机构
[1] Univ Roma Tre, Dipartimento Ingn Elettron, I-00146 Rome, Italy
[2] Ist Nazl Fis Nucl, Sez Roma Tre, I-00146 Rome, Italy
关键词
D O I
10.1088/1751-8113/42/46/465203
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
In this paper we show that the complex Burgers and the Kundu-Eckhaus equations are related by a Miura transformation. We use this relation to discretize the Kundu-Eckhaus equation.
引用
收藏
页数:8
相关论文
共 13 条
[1]  
Ablowitz MJ, 2005, J NONLINEAR MATH PHY, V12, P1
[2]  
ABLOWITZ MJ, 1976, STUD APPL MATH, V55, P213
[3]  
Bateman H., 1915, Mon. Weather Rev., V43, P163
[4]  
Burgers J.M., 1948, Adv. Appl. Mech., V1, P197, DOI DOI 10.1016/S0065-2156(08)70100-5
[5]   NONLINEAR EVOLUTION-EQUATIONS, RESCALINGS, MODEL PDES AND THEIR INTEGRABILITY .1. [J].
CALOGERO, F ;
ECKHAUS, W .
INVERSE PROBLEMS, 1987, 3 (02) :229-262
[6]   ON A QUASI-LINEAR PARABOLIC EQUATION OCCURRING IN AERODYNAMICS [J].
COLE, JD .
QUARTERLY OF APPLIED MATHEMATICS, 1951, 9 (03) :225-236
[7]  
ECKHAUS W, 1986, LECT NOTES PHYS, V246
[8]  
FORSYTH A. R., 1906, THEORY DIFFERENTIAL, V6
[9]   ASYMPTOTIC THEORY OF PLANE SOLITON SELF-FOCUSING IN 2-DIMENSIONAL WAVE MEDIA [J].
GORSHKOV, KA ;
PELINOVSKY, DE .
PHYSICA D, 1995, 85 (04) :468-484
[10]   THE PARTIAL DIFFERENTIAL EQUATION UT+UUX=MU-XX [J].
HOPF, E .
COMMUNICATIONS ON PURE AND APPLIED MATHEMATICS, 1950, 3 (03) :201-230