Dynamic classification of escape time Sierpinski curve Julia sets

被引:16
作者
Devaney, Robert L. [1 ]
Pilgrim, Kevin M. [2 ]
机构
[1] Boston Univ, Dept Math, Boston, MA 02215 USA
[2] Indiana Univ, Dept Math, Bloomington, IN 47405 USA
关键词
Julia set; Sierpinski curve; escape time; conjugacy; RATIONAL MAPS;
D O I
10.4064/fm202-2-5
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
For n >= 2, the family of rational maps F lambda(z) = z(n) + lambda/z(n) contains a countably infinite set of parameter values for which all critical orbits eventually land after some number kappa of iterations on the point at infinity. The Julia sets of such maps are Sierpinski curves if kappa >= 3. We show that two such maps are topologically conjugate on their Julia sets if and only if they are Mobius or anti-Mobius conjugate, and we give a precise count of the number of topological conjugacy classes as a function of n and kappa.
引用
收藏
页码:181 / 198
页数:18
相关论文
共 16 条
[1]  
BONK M, AM J MATH IN PRESS
[2]  
Bonk M., 2006, Proc. Internat. Congr. Math. (Madrid 2006), V2, P1349
[3]  
Devaney RL, 2006, CONTEMP MATH, V396, P37
[4]   The escape trichotomy for singularly perturbed rational maps [J].
Devaney, RL ;
Look, DM ;
Uminsky, D .
INDIANA UNIVERSITY MATHEMATICS JOURNAL, 2005, 54 (06) :1621-1634
[5]   Structure of the McMullen domain in the parameter planes for rational maps [J].
Devaney, RL .
FUNDAMENTA MATHEMATICAE, 2005, 185 (03) :267-285
[6]   THE MCMULLEN DOMAIN: SATELLITE MANDELBROT SETS AND SIERPINSKI HOLES [J].
Devaney, Robert L. .
CONFORMAL GEOMETRY AND DYNAMICS, 2007, 11 :164-190
[7]   A MYRIAD OF SIERPINSKI CURVE JULIA SETS [J].
Devaney, Robert L. .
DIFFERENCE EQUATIONS, SPECIAL FUNCTIONS AND ORTHOGONAL POLYNOMIALS, 2007, :131-148
[8]  
Devaney RobertL., 2004, QUAL THEOR DYN SYST, V5, P337
[9]   A PROOF OF THURSTONS TOPOLOGICAL CHARACTERIZATION OF RATIONAL FUNCTIONS [J].
DOUADY, A ;
HUBBARD, JH .
ACTA MATHEMATICA, 1993, 171 (02) :263-297
[10]  
KRASINKIEWICZ J, 1969, PRACE MAT, V12, P255