Computational complexity of generators and nongenerators in algebra

被引:5
作者
Bergman, C [1 ]
Slutzki, G
机构
[1] Iowa State Univ Sci & Technol, Dept Math, Ames, IA 50011 USA
[2] Iowa State Univ Sci & Technol, Dept Comp Sci, Ames, IA 50011 USA
关键词
subalgebra; subalgebra generation; Frattini;
D O I
10.1142/S0218196702001127
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We discuss the computational complexity of several problems concerning subsets of an algebraic structure that generate the structure. We show that the problem of determining whether a given subset X generates an algebra A is P-complete, while determining the size of the smallest generating set is NP-complete. We also consider several questions related to the Frattini subuniverse, Phi(A), of an algebra A. We show that the membership problem for Phi(A) is co-NP-complete, while the membership problems for Phi(Phi(A)), Phi(Phi(Phi(A))),... all lie in the class P-parallel to(NP).
引用
收藏
页码:719 / 735
页数:17
相关论文
共 40 条
[1]   Maximal sublattices of finite distributive lattices [J].
Adams, ME ;
Dwinger, P ;
Schmid, J .
ALGEBRA UNIVERSALIS, 1996, 36 (04) :488-504
[2]   Maximal sublattices and frattini sublattices of bounded lattices [J].
Adams, ME ;
Freese, R ;
Nation, JB ;
Schmid, J .
JOURNAL OF THE AUSTRALIAN MATHEMATICAL SOCIETY SERIES A-PURE MATHEMATICS AND STATISTICS, 1997, 63 :110-127
[3]  
[Anonymous], 1972, LECT NOTES MATH
[4]  
[Anonymous], 1979, Computers and Intractablity: A Guide to the Theoryof NP-Completeness
[5]  
BAKHTURIN YA, 1985, IDENTITIES LIVE ALGE
[6]   Computational complexity of term-equivalence [J].
Bergman, C ;
Juedes, D ;
Slutzki, G .
INTERNATIONAL JOURNAL OF ALGEBRA AND COMPUTATION, 1999, 9 (01) :113-128
[7]   Complexity of some problems concerning varieties and quasi-varieties of algebras [J].
Bergman, C ;
Slutzki, G .
SIAM JOURNAL ON COMPUTING, 2000, 30 (02) :359-382
[8]  
BERGMAN C, 2000, IN PRESS THEORET COM
[9]   Irreducible elements and uniquely generated algebras [J].
Berman, JD ;
Bordalo, GH .
DISCRETE MATHEMATICS, 2002, 245 (1-3) :63-79
[10]  
Burris S., 1981, A course in universal algebra