Critical graphs with Roman domination number four

被引:0
作者
Martinez-Perez, A. [1 ]
Oliveros, D. [2 ]
机构
[1] Fac CC Soci Talavera, Avda Real Fabrica de Seda S-N, Toledo 45600, Spain
[2] Univ Nacl Autonoma Mexico, Inst Math, Mexico City, DF, Mexico
关键词
Roman domination; critical; 05C69;
D O I
10.1016/j.akcej.2019.12.015
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
A Roman domination function on a graph G is a function r:V(G)-> {0,1,2} satisfying the condition that every vertex u for which r(u) = 0 is adjacent to at least one vertex v for which r(v) = 2. The weight of a Roman domination function is the value r(V(G))=<mml:munder>Sigma u is an element of V(G)</mml:munder>r(u). The Roman domination number gamma R(G) of G is the minimum weight of a Roman domination function on G. "Roman Criticality" often refers to the study of graphs where the Roman domination number decreases when adding an edge or removing a vertex of the graph. In this paper we add some condition to this notion of criticality and give a complete characterization of critical graphs with Roman Domination number gamma R(G)=4.
引用
收藏
页码:804 / 809
页数:6
相关论文
共 13 条
[11]   Defendens imperium romanum: A classical problem in military strategy [J].
ReVelle, CS ;
Rosing, KE .
AMERICAN MATHEMATICAL MONTHLY, 2000, 107 (07) :585-594
[12]  
Samodivkin V, 2018, AUSTRALAS J COMB, V71, P303
[13]   Defend the Roman Empire! [J].
Stewart, I .
SCIENTIFIC AMERICAN, 1999, 281 (06) :136-+