Demonstration of CMOS-Compatible Multi-Level Graphene Interconnects With Metal Vias

被引:13
作者
Agashiwala, Kunjesh [1 ]
Jiang, Junkai [1 ]
Parto, Kamyar [1 ]
Zhang, Dujiao [1 ,2 ]
Yeh, Chao-Hui [1 ]
Banerjee, Kaustav [1 ]
机构
[1] Univ Calif Santa Barbara, Dept Elect & Comp Engn, Santa Barbara, CA 93106 USA
[2] Xi An Jiao Tong Univ, Sch Elect Engn, Xian 710049, Peoples R China
关键词
Resistance; Silicon compounds; Wires; Graphene; Metals; Integrated circuit interconnections; Substrates; CMOS-compatible; doped multilayer graphene (DMLG); dual-damascene (DD); electromigration (EM); graphene capping-layer; interconnects; multi-level; reliability; self-heating (SH); solid-phase diffusion; subtractive etching; CARBON NANOMATERIALS; COPPER; TRANSISTORS; CONTACTS;
D O I
10.1109/TED.2021.3061637
中图分类号
TM [电工技术]; TN [电子技术、通信技术];
学科分类号
0808 ; 0809 ;
摘要
Doped-multilayer-graphene (DMLG) interconnects employing the subtractive-etching (SE) process have opened a new pathway for designing interconnects at advanced technology nodes, where conventional metal wires suffer from significant resistance increase, self-heating (SH), electromigration (EM), and various integration challenges. Even though single-level scaled graphene wires have been shown to possess better performance and reliability with respect to dual-damascene (DD) and SE-enabled metal wires, a multi-level graphene interconnect technology (with vias) has remained elusive, which is of paramount importance for its integration in future technology nodes. This work, for the first time, addresses that need by engineering a CMOS-compatible solid-phase growth technique to yield large-area multilayer graphene (MLG) on dielectric (SiO2) and metal (Cu) substrates and subsequently demonstrating multi-level MLG interconnects with metal vias. Using rigorous theoretical and experimental analyses, we demonstrate that multi-level MLG interconnects with metal vias undergo < 2% change in the via resistance under accelerated stress conditions, demonstrating its superior reliability against SH and EM, making them ideal candidates for sub-10 nm nodes.
引用
收藏
页码:2083 / 2091
页数:9
相关论文
共 40 条
[11]   Impact of Transport Anisotropy on the Performance of van der Waals Materials-Based Electron Devices [J].
Cao, Wei ;
Huang, Mengqi ;
Yeh, Chao-Hui ;
Parto, Kamyar ;
Banerjee, Kaustav .
IEEE TRANSACTIONS ON ELECTRON DEVICES, 2020, 67 (03) :1310-1316
[12]  
Chau R, 2019, INT EL DEVICES MEET, DOI 10.1109/IEDM19573.2019.8993462
[13]   Patterning challenges in the fabrication of 12 nm half-pitch dual damascene copper ultra low-k interconnects [J].
Chawla, J. S. ;
Singh, K. J. ;
Myers, A. ;
Michalak, D. J. ;
Schenker, R. ;
Jezewski, C. ;
Krist, B. ;
Gstrein, F. ;
Indukuri, T. K. ;
Yoo, H. J. .
ADVANCED ETCH TECHNOLOGY FOR NANOPATTERNING III, 2014, 9054
[14]   RC Benefits of Advanced Metallization Options [J].
Ciofi, Ivan ;
Roussel, Philippe J. ;
Baert, Rogier ;
Contino, Antonino ;
Gupta, Anshul ;
Croes, Kristof ;
Wilson, Christopher J. ;
Mocuta, Dan ;
Tokei, Zsolt .
IEEE TRANSACTIONS ON ELECTRON DEVICES, 2019, 66 (05) :2339-2345
[15]   Sub-100 nm2 Cobalt Interconnects [J].
Dutta, Shibesh ;
Beyne, Sofie ;
Gupta, Anshul ;
Kundu, Shreya ;
Bender, Hugo ;
Van Elshocht, Sven ;
Jamieson, Geraldine ;
Vandervorst, Wilfried ;
Bommels, Jurgen ;
Wilson, Christopher J. ;
Tokei, Zsolt ;
Adelmann, Christoph .
IEEE ELECTRON DEVICE LETTERS, 2018, 39 (05) :731-734
[16]   A consistent and accurate ab initio parametrization of density functional dispersion correction (DFT-D) for the 94 elements H-Pu [J].
Grimme, Stefan ;
Antony, Jens ;
Ehrlich, Stephan ;
Krieg, Helge .
JOURNAL OF CHEMICAL PHYSICS, 2010, 132 (15)
[17]  
Hsieh Y. L., 2013, P IEEE INT REL PHYS, P3, DOI [10.1109/IRPS.2013.6532056, DOI 10.1109/IRPS.2013.6532056]
[18]  
Hu CK, 2018, INT RELIAB PHY SYM
[19]   Scaling analysis of multilevel interconnect temperatures for high-performance ICs [J].
Im, S ;
Srivastava, N ;
Banerjee, K ;
Goodson, KE .
IEEE TRANSACTIONS ON ELECTRON DEVICES, 2005, 52 (12) :2710-2719
[20]  
Jiang JK, 2018, INT EL DEVICES MEET