Dissipation inequalities for the analysis of a class of PDEs

被引:37
作者
Ahmadi, Mohamadreza [1 ]
Valmorbida, Giorgio [1 ]
Papachristodoulou, Antonis [1 ]
机构
[1] Univ Oxford, Dept Engn Sci, Parks Rd, Oxford OX1 3PJ, England
基金
英国工程与自然科学研究理事会;
关键词
Distributed parameter systems; Convex optimization; Sum-of-squares programming; Dissipation inequalities; Interconnected systems; LYAPUNOV FUNCTIONS; STABILITY; SYSTEMS; STABILIZATION;
D O I
10.1016/j.automatica.2015.12.010
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
In this paper, we develop dissipation inequalities for a class of well-posed systems described by partial differential equations (PDEs). We study passivity, reachability, induced input-output norm boundedness, and input-to-state stability (ISS). We consider both cases of in-domain and boundary inputs and outputs. We study the interconnection of PDE-PDE systems and formulate small gain conditions for stability. For PDEs polynomial in dependent and independent variables, we demonstrate that sum-of-squares (SOS) programming can be used to compute certificates for each property. Therefore, the solution to the proposed dissipation inequalities can be obtained via semi-definite programming. The results are illustrated with examples. (C) 2016 The Authors. Published by Elsevier Ltd.
引用
收藏
页码:163 / 171
页数:9
相关论文
共 31 条
  • [1] Ahmadi M., 2015, ADDENDUM DISSIPATION
  • [2] Ahmadi M, 2015, P AMER CONTR CONF, P2594, DOI 10.1109/ACC.2015.7171125
  • [3] Ahmadi M, 2014, IEEE DECIS CONTR P, P4310, DOI 10.1109/CDC.2014.7040061
  • [4] [Anonymous], 2008, Nonlinear dynamical systems and control: A Lyapunov-based approach
  • [5] [Anonymous], 1996, L2-gain and passivity techniques in nonlinear control
  • [6] A Strict Control Lyapunov Function for a Diffusion Equation With Time-Varying Distributed Coefficients
    Argomedo, Federico Bribiesca
    Prieur, Christophe
    Witrant, Emmanuel
    Bremond, Sylvain
    [J]. IEEE TRANSACTIONS ON AUTOMATIC CONTROL, 2013, 58 (02) : 290 - 303
  • [7] Boyd S., 1994, STUDIES APPL MATH, V15
  • [8] Input-to-state stability of infinite-dimensional control systems
    Dashkovskiy, Sergey
    Mironchenko, Andrii
    [J]. MATHEMATICS OF CONTROL SIGNALS AND SYSTEMS, 2013, 25 (01) : 1 - 35
  • [9] Analysis and design of polynomial control systems using dissipation inequalities and sum of squares
    Ebenbauer, Christian
    Allgoewer, Frank
    [J]. COMPUTERS & CHEMICAL ENGINEERING, 2006, 30 (10-12) : 1590 - 1602
  • [10] Evans L., 2010, PARTIAL DIFFERENTIAL, V2