The effect of Prandtl number on turbulent sheared thermal convection

被引:27
作者
Blass, Alexander [1 ,2 ]
Tabak, Pier [1 ,2 ]
Verzicco, Roberto [1 ,2 ,3 ,4 ]
Stevens, Richard J. A. M. [1 ,2 ]
Lohse, Detlef [1 ,2 ,5 ]
机构
[1] Univ Twente, Phys Fluids Grp, Max Planck Ctr Complex Fluid Dynam, JM Burgers Ctr Fluid Dynam, POB 217, NL-7500 AE Enschede, Netherlands
[2] Univ Twente, Dept Sci & Technol, MESA Res Inst, POB 217, NL-7500 AE Enschede, Netherlands
[3] Univ Roma Tor Vergata, Dipartimento Ingn Ind, Via Politecn 1, I-00133 Rome, Italy
[4] Gran Sasso Sci Inst, Viale F Crispi,7, I-67100 Laquila, Italy
[5] Max Planck Inst Dynam & Self Org, Fassberg 17, D-37077 Gottingen, Germany
关键词
turbulent convection; Benard convection; atmospheric flows; PLANETARY BOUNDARY-LAYER; COUETTE-FLOW; SCALE MOTIONS; HEAT-TRANSFER; POISEUILLE;
D O I
10.1017/jfm.2020.1019
中图分类号
O3 [力学];
学科分类号
08 ; 0801 ;
摘要
In turbulent wall sheared thermal convection, there are three different flow regimes, depending on the relative relevance of thermal forcing and wall shear. In this paper, we report the results of direct numerical simulations of such sheared Rayleigh-Benard convection, at fixed Rayleigh number Ra = 10(6), varying the wall Reynolds number in the range 0 <= Re-w <= 4000 and Prandtl number 0.22 <= Pr <= 4.6, extending our prior work by Blass et al. (J. Fluid Mech., vol. 897, 2020, A22), where Pr was kept constant at unity and the thermal forcing (Ra) varied. We cover a wide span of bulk Richardson numbers 0.014 <= Ri <= 100 and show that the Prandtl number strongly influences the morphology and dynamics of the flow structures. In particular, at fixed Ra and Rew, a high Prandtl number causes stronger momentum transport from the walls and therefore yields a greater impact of the wall shear on the flow structures, resulting in an increased effect of Rew on the Nusselt number. Furthermore, we analyse the thermal and kinetic boundary layer thicknesses and relate their behaviour to the resulting flow regimes. For the largest shear rates and Pr numbers, we observe the emergence of a Prandtl-von Karman log layer, signalling the onset of turbulent dynamics in the boundary layer.
引用
收藏
页数:14
相关论文
共 58 条
[1]   Heat transfer and large scale dynamics in turbulent Rayleigh-Benard convection [J].
Ahlers, Guenter ;
Grossmann, Siegfried ;
Lohse, Detlef .
REVIEWS OF MODERN PHYSICS, 2009, 81 (02) :503-537
[2]   Computational study of turbulent laminar patterns in Couette flow [J].
Barkley, D ;
Tuckerman, LS .
PHYSICAL REVIEW LETTERS, 2005, 94 (01) :1-4
[3]   Flow organization and heat transfer in turbulent wall sheared thermal convection [J].
Blass, Alexander ;
Zhu, Xiaojue ;
Verzicco, Roberto ;
Lohse, Detlef ;
Stevens, Richard J. A. M. .
JOURNAL OF FLUID MECHANICS, 2020, 897
[4]   Universal continuous transition to turbulence in a planar shear flow [J].
Chantry, Matthew ;
Tuckerman, Laurette S. ;
Barkley, Dwight .
JOURNAL OF FLUID MECHANICS, 2017, 824
[5]   New perspectives in turbulent Rayleigh-Benard convection [J].
Chilla, F. ;
Schumacher, J. .
EUROPEAN PHYSICAL JOURNAL E, 2012, 35 (07)
[6]   Effect of Prandtl number on heat transport enhancement in Rayleigh-Benard convection under geometrical confinement [J].
Chong, Kai Leong ;
Wagner, Sebastian ;
Kaczorowski, Matthias ;
Shishkina, Olga ;
Xia, Ke-Qing .
PHYSICAL REVIEW FLUIDS, 2018, 3 (01)
[7]   Exploring the severely con fined regime in Rayleigh-Benard convection [J].
Chong, Kai Leong ;
Xia, Ke-Qing .
JOURNAL OF FLUID MECHANICS, 2016, 805 :R4
[8]  
DEARDORFF JW, 1972, J ATMOS SCI, V29, P91, DOI 10.1175/1520-0469(1972)029<0091:NIONAU>2.0.CO
[9]  
2
[10]   DIRECT NUMERICAL SIMULATIONS OF THE EFFECTS OF SHEAR ON TURBULENT RAYLEIGH-BENARD CONVECTION [J].
DOMARADZKI, JA ;
METCALFE, RW .
JOURNAL OF FLUID MECHANICS, 1988, 193 :499-531