Refractive Index: The Ultimate Tool for Real-Time Monitoring of Solid-Phase Peptide Synthesis. Greening the Process

被引:13
作者
de la Torre, Beatriz G. [2 ]
Ramkisson, Shaveer [1 ]
Albericio, Fernando [1 ,3 ,4 ,5 ]
Lopez, John [6 ]
机构
[1] Univ KwaZulu Natal, Sch Chem & Phys, Peptide Sci Lab, ZA-4000 Durban, South Africa
[2] Univ KwaZulu Natal, Coll Hlth Sci, Sch Lab Med & Med Sci, KwaZulu Natal Res Innovat & Sequencing Platform K, ZA-4041 Durban, South Africa
[3] Inst Adv Chem Catalonia IQAC CSIC, Barcelona 08034, Spain
[4] Univ Barcelona, Networking Ctr Bioengn Biomat & Nanomed, CIBER BBN, Barcelona 08028, Spain
[5] Univ Barcelona, Dept Organ Chem, Barcelona 08028, Spain
[6] Novartis Pharma AG, CH-4056 Basel, Switzerland
基金
新加坡国家研究基金会;
关键词
Fmoc removal; peptide coupling; PAT; process analytical tool; SPPS;
D O I
10.1021/acs.oprd.1c00051
中图分类号
O69 [应用化学];
学科分类号
081704 ;
摘要
Peptides are the basis of many drugs currently on the market and of more in advanced studies. Most peptides are synthesized using solid-phase peptide synthesis (SPPS). A characteristic of this strategy is that synthetic intermediates are not isolated. In this context, the development of a real-time monitoring method would assure an optimal synthetic process. The refractive index (RI) of a liquid provides key information about its physical properties and the composition of any solution. Here, we provide the first demonstration that the RI is a process analytical tool (PAT) suitable for the real-time monitoring of SPPS. This strategy comprises three steps: coupling, deprotection, and washes, which can be monitored online by refractometry. Given that monitoring capacity helps in the determination of the endpoint of the reactions and the optimization of all synthetic steps, it has a direct impact on the consumption of reagents, solvents, and time, thereby contributing to greener SPPS.
引用
收藏
页码:1047 / 1053
页数:7
相关论文
共 21 条
  • [1] Calculating Resin Functionalization in Solid-Phase Peptide Synthesis Using a Standardized Method based on Fmoc Determination
    Al Musaimi, Othman
    Basso, Alessandra
    de la Torre, Beatriz G.
    Albericio, Fernando
    [J]. ACS COMBINATORIAL SCIENCE, 2019, 21 (11) : 717 - 721
  • [2] 2019 FDA TIDES (Peptides and Oligonucleotides) Harvest
    Al Shaer, Danah
    Al Musaimi, Othman
    Albericio, Fernando
    de la Torre, Beatriz G.
    [J]. PHARMACEUTICALS, 2020, 13 (03)
  • [3] Baru MB, 2001, J PEPT RES, V57, P193
  • [4] Bing Y, 1998, ACCOUNTS CHEM RES, V31, P621
  • [5] Large-scale manufacture of peptide therapeutics by chemical synthesis
    Bray, BL
    [J]. NATURE REVIEWS DRUG DISCOVERY, 2003, 2 (07) : 587 - 593
  • [6] FEEDBACK-CONTROL IN ORGANIC-SYNTHESIS - A SYSTEM FOR SOLID-PHASE PEPTIDE-SYNTHESIS WITH TRUE AUTOMATION
    CAMERON, L
    MELDAL, M
    SHEPPARD, RC
    [J]. JOURNAL OF THE CHEMICAL SOCIETY-CHEMICAL COMMUNICATIONS, 1987, (04) : 270 - 272
  • [7] 9-FLUORENYLMETHOXYCARBONYL FUNCTION, A NEW BASE-SENSITIVE AMINO-PROTECTING GROUP
    CARPINO, LA
    HAN, GY
    [J]. JOURNAL OF THE AMERICAN CHEMICAL SOCIETY, 1970, 92 (19) : 5748 - &
  • [8] CHRISTENSEN T, 1979, ACTA CHEM SCAND B, V33, P763, DOI 10.3891/acta.chem.scand.33b-0763
  • [9] Peptide Coupling Reagents, More than a Letter Soup
    El-Faham, Ayman
    Albericio, Fernando
    [J]. CHEMICAL REVIEWS, 2011, 111 (11) : 6557 - 6602
  • [10] ChemMatrix, a poly(ethylene glycol)-based support for the solid-phase synthesis of complex peptides
    García-Martín, F
    Quintanar-Audelo, M
    García-Ramos, Y
    Cruz, LJ
    Gravel, C
    Furic, R
    Côté, S
    Tulla-Puche, J
    Albericio, F
    [J]. JOURNAL OF COMBINATORIAL CHEMISTRY, 2006, 8 (02): : 213 - 220