New 2+1 dimensional nonisospectral Toda lattice hierarchy

被引:27
作者
Gordoa, P. R.
Pickering, A.
Zhu, Z. N.
机构
[1] Univ Rey Juan Carlos, ESCET, Dept Matemat Aplicada, Madrid 28933, Spain
[2] Shanghai Jiao Tong Univ, Dept Math, Shanghai 200030, Peoples R China
基金
中国国家自然科学基金;
关键词
D O I
10.1063/1.2436983
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
We give a new 2+1 dimensional nonisospectral generalization of the Toda lattice hierarchy. Reductions yield a variety of new integrable hierarchies along with their underlying linear problems, including new 1+1 dimensional differential-delay hierarchies (nonisospectral and isospectral), new ordinary differential-delay hierarchies, and new discrete Painleve hierarchies. We also show that a reduction in components yields our previously obtained 2+1 dimensional nonisospectral Volterra lattice hierarchy. (c) 2007 American Institute of Physics.
引用
收藏
页数:18
相关论文
共 36 条
[1]   NONLINEAR DIFFERENTIAL-DIFFERENCE EQUATIONS [J].
ABLOWITZ, MJ ;
LADIK, JF .
JOURNAL OF MATHEMATICAL PHYSICS, 1975, 16 (03) :598-603
[2]  
[Anonymous], DIFFER URAVN
[3]  
BOGOYAVLENSKII OI, 1990, USP MAT NAUK, V45, P17
[4]   METHOD TO GENERATE SOLVABLE NONLINEAR EVOLUTION EQUATIONS [J].
CALOGERO, F .
LETTERE AL NUOVO CIMENTO, 1975, 14 (12) :443-447
[5]  
CALOGERO F, 1982, SPECTRAL TRANSFORM S, V1
[6]  
DRYUMA VS, 1974, JETP LETT+, V19, P387
[7]   TODA LATTICE .2. EXISTENCE OF INTEGRALS [J].
FLASCHKA, H .
PHYSICAL REVIEW B, 1974, 9 (04) :1924-1925
[8]   TODA LATTICE .2. INVERSE-SCATTERING SOLUTION [J].
FLASCHKA, H .
PROGRESS OF THEORETICAL PHYSICS, 1974, 51 (03) :703-716
[9]   FROM CONTINUOUS TO DISCRETE PAINLEVE EQUATIONS [J].
FOKAS, AS ;
GRAMMATICOS, B ;
RAMANI, A .
JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 1993, 180 (02) :342-360
[10]   METHOD FOR SOLVING KORTEWEG-DEVRIES EQUATION [J].
GARDNER, CS ;
GREENE, JM ;
KRUSKAL, MD ;
MIURA, RM .
PHYSICAL REVIEW LETTERS, 1967, 19 (19) :1095-&