Minimum Bisection is Fixed Parameter Tractable

被引:29
作者
Cygan, Marek [1 ]
Lokshtanov, Daniel [2 ]
Pilipczuk, Marcin [2 ]
Pilipczuk, Michal [2 ]
Saurabh, Saket [2 ,3 ]
机构
[1] Univ Warsaw, Inst Informat, Warsaw, Poland
[2] Univ Bergen, Dept Informat, Bergen, Norway
[3] Inst Math Sci, Chennai, Tamil Nadu, India
来源
STOC'14: PROCEEDINGS OF THE 46TH ANNUAL 2014 ACM SYMPOSIUM ON THEORY OF COMPUTING | 2014年
基金
欧洲研究理事会;
关键词
minimum bisection; fixed-parameter tractability; tree de-composition; randomized contractions; APPROXIMATION; ALGORITHM; PLANAR;
D O I
10.1145/2591796.2591852
中图分类号
TP301 [理论、方法];
学科分类号
081202 ;
摘要
In the classic MINIMUM BISECTION problem we are given as input a graph G and an integer k. The task is to determine whether there is a partition of V(G) into two parts A and B such that 11,41-1B11 < 1 and there are at most k edges with one endpoint in A and the other in B. In this paper we give an algorithm for MINIMUM BISECTION with running time 0(2 (k3)n3 log3 n). This is the first fixed parameter tractable algorithm for MINIMUM BISECTION. At the core of our algorithm lies a new decomposition theorem that states that every graph G can be decomposed by small separators into parts where each part is "highly connected" in the following sense: any cut of bounded size can separate only a limited number of vertices from each part of the decomposition. Our techniques generalize to the weighted setting, where we seek for a bisection of minimum weight among solutions that contain at most k edges.
引用
收藏
页码:323 / 332
页数:10
相关论文
共 25 条
[1]  
[Anonymous], 2002, P GENETIC EVOLUTIONA
[2]  
[Anonymous], 1979, COMPUTERS INTRACTABI
[3]  
BUI T, 1989, ACM IEEE D, P775, DOI 10.1145/74382.74527
[4]   PARTITIONING PLANAR GRAPHS [J].
BUI, TN ;
PECK, A .
SIAM JOURNAL ON COMPUTING, 1992, 21 (02) :203-215
[5]   GRAPH BISECTION ALGORITHMS WITH GOOD AVERAGE CASE BEHAVIOR [J].
BUI, TN ;
CHAUDHURI, S ;
LEIGHTON, FT ;
SIPSER, M .
COMBINATORICA, 1987, 7 (02) :171-191
[6]  
Carmesin J., 2011, CORR
[7]   An Improved Parameterized Algorithm for the Minimum Node Multiway Cut Problem [J].
Chen, Jianer ;
Liu, Yang ;
Lu, Songjian .
ALGORITHMICA, 2009, 55 (01) :1-13
[8]   Designing FPT algorithms for cut problems using randomized contractions [J].
Chitnis, Rajesh ;
Cygan, Marek ;
Hajiaghayi, MohammadTaghi ;
Pilipczuk, Marcin ;
Pilipczuk, Michal .
2012 IEEE 53RD ANNUAL SYMPOSIUM ON FOUNDATIONS OF COMPUTER SCIENCE (FOCS), 2012, :460-469
[9]  
Cygan M., 2013, CORR
[10]  
Diestel R., 2005, GRAPH THEORY, VThird