The fatou property in p-convex banach lattices

被引:16
作者
Curbera, Guillermo P.
Ricker, Werner J.
机构
[1] Univ Seville, Fac Matemat, E-41080 Seville, Spain
[2] Katholische Univ Eichstatt Ingolstadt, Math Geog Fak, D-85072 Eichstatt, Germany
关键词
Banach function space; Fatou property; vector measure; space of p-integrable functions; p-convexity;
D O I
10.1016/j.jmaa.2006.04.086
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
New features of the Banach function space L-omega(P)(nu), that is, the space of all nu-scalarly pth power integrable functions (with I <= p < infinity and nu any vector measure), are presented. The Fatou property plays an essential role and leads to a new representation theorem for a large class of abstract p-convex Banach lattices. (c) 2006 Elsevier Inc. All rights reserved.
引用
收藏
页码:287 / 294
页数:8
相关论文
共 18 条
[1]  
BARTLE RG, 1955, CAN J MATH, V7, P289
[2]   OPERATORS INTO L1 OF A VECTOR MEASURE AND APPLICATIONS TO BANACH-LATTICES [J].
CURBERA, GP .
MATHEMATISCHE ANNALEN, 1992, 293 (02) :317-330
[3]   Banach lattices with the Fatou property and optimal domains of kernel operators [J].
Curbera, Guillermo P. ;
Ricker, Werner J. .
INDAGATIONES MATHEMATICAE-NEW SERIES, 2006, 17 (02) :187-204
[4]  
Diestel J., 1977, VECTOR MEASURES
[5]   Spaces of p-integrable functions with respect to a vector measure [J].
Fernández, A ;
Mayoral, F ;
Naranjo, F ;
Sáez, C ;
Sánchez-Pérez, EA .
POSITIVITY, 2006, 10 (01) :1-16
[6]   INTEGRABILITY AND SUMMABILITY IN VECTOR-SPACES [J].
LEWIS, DR .
ILLINOIS JOURNAL OF MATHEMATICS, 1972, 16 (02) :294-&
[7]   INTEGRATION WITH RESPECT TO VECTOR MEAURES [J].
LEWIS, DR .
PACIFIC JOURNAL OF MATHEMATICS, 1970, 33 (01) :157-&
[8]  
Lindenstrauss J., 1979, ERGEB MATH GRENZGEB, V97
[9]  
LUXEMBURG WA, 1972, CANAD MATH C, P45
[10]  
LUXEMBURG WAJ, 1963, INDAG MATH, V25, P148