Mesoscale-architecture-based crack evolution dictating cycling stability of advanced lithium ion batteries

被引:61
作者
Hu, Jiangtao [1 ]
Li, Linze [2 ]
Hu, Enyuan [3 ]
Chae, Sujong [1 ]
Jia, Hao [1 ]
Liu, Tongchao [4 ]
Wu, Bingbin [1 ]
Bi, Yujing [1 ]
Amine, Khalil [4 ]
Wang, Chongmin [2 ]
Zhang, Jiguang [1 ]
Tao, Jinhui [5 ]
Xiao, Jie [1 ,6 ]
机构
[1] Pacific Northwest Natl Lab, Energy & Environm Directorate, Richland, WA 99354 USA
[2] Pacific Northwest Natl Lab, Environm Mol Sci Lab, Richland, WA 99352 USA
[3] Brookhaven Natl Lab, Chem Div, Upton, NY 11973 USA
[4] Argonne Natl Lab, Chem Sci & Engn Div, 9700 S Cass Ave, Argonne, IL 60439 USA
[5] Pacific Northwest Natl Lab, Phys & Computat Sci Directorate, Richland, WA 99354 USA
[6] Univ Washington, Dept Mat Sci & Engn, Seattle, WA 98195 USA
关键词
Ni-rich NMC; In situ techniques; Crack evolution; Electrochemical stability; NI-RICH; STRUCTURED CATHODE; ELECTROCHEMISTRY; CHEMISTRY; SECONDARY; SURFACE; CO2;
D O I
10.1016/j.nanoen.2020.105420
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
The cracking phenomenon of Ni-rich NMC (LiNixMnyCo1-x-yO2, x >= 0.6) secondary particles is frequently discovered and believed to be one of critical reasons deteriorating the long-term cycling stability of NMC cathode in lithium ion batteries (LIBs). However, the initiation and evolution of those cracks is still controversial due to the limited quantification especially by in situ monitoring, leading to the challenge of identifying an efficient approach to inhibit the formation of the fractures during repeated cycling. Herein, the irreversible, anisotropic cycling lattice and mesoscale expansion/shrinkage of nano-grains during the first cycle, as revealed by in situ X-ray diffraction (XRD) and in situ atomic force microscopy (AFM), have been quantified and confirmed to be the dominant driving forces of microcracks initiation at the grain boundaries. These microcracks preferentially nucleate at the core region with random oriented nano-grains in early stage. The further growth and aggregation of microcracks into macrocrack eventually results in microfracture propagation radially outward to the periphery region with more uniform nano-grain orientation. This mesoscale nano-grain architecture controlled cracking process highlights the importance of predictive synthesis of cathode materials with controllable multiscale crystalline architecture for high-performance LIBs.
引用
收藏
页数:8
相关论文
共 31 条
[1]   Comparative study of energy consumption and CO2 emissions between Beijing and London [J].
Cai, Zhihua ;
Ou, Xunmin ;
Zhang, Xu ;
Zhang, Xiliang ;
He, Jiankun ;
Xing, Yangang .
FRONTIERS IN ENERGY, 2013, 7 (01) :1-5
[2]   Critical Parameters for Evaluating Coin Cells and Pouch Cells of Rechargeable Li-Metal Batteries [J].
Chen, Shuru ;
Niu, Chaojiang ;
Lee, Hongkyung ;
Li, Qiuyan ;
Yu, Lu ;
Xu, Wu ;
Zhang, Ji-Guang ;
Dufek, Eric J. ;
Whittingham, M. Stanley ;
Meng, Shirley ;
Xiao, Jie ;
Liu, Jun .
JOULE, 2019, 3 (04) :1094-1105
[3]   Storage characteristics of LiNi0.8Co0.1+xMn0.1-xO2 (x=0, 0.03, and 0.06) cathode materials for lithium batteries [J].
Eom, Junho ;
Kim, Min Gyu ;
Cho, Jaephil .
JOURNAL OF THE ELECTROCHEMICAL SOCIETY, 2008, 155 (03) :A239-A245
[4]   Origin of Carbon Dioxide Evolved during Cycling of Nickel-Rich Layered NCM Cathodes [J].
Hatsukade, Toru ;
Schiele, Alexander ;
Hartmann, Pascal ;
Brezesinski, Torsten ;
Janek, Juergen .
ACS APPLIED MATERIALS & INTERFACES, 2018, 10 (45) :38892-38899
[5]   Microstructural study on degradation mechanism of layered LiNi0.6Co0.2Mn0.2O2 cathode materials by analytical transmission electron microscopy [J].
Kim, Na Yeon ;
Yim, Taeeun ;
Song, Jun Ho ;
Yu, Ji-Sang ;
Lee, Zonghoon .
JOURNAL OF POWER SOURCES, 2016, 307 :641-648
[6]   Compositionally and structurally redesigned high-energy Ni-rich layered cathode for next-generation lithium batteries [J].
Kim, Un-Hyuck ;
Kim, Jae-Hyung ;
Hwang, Jang-Yeon ;
Ryu, Hoon-Hee ;
Yoon, Chong S. ;
Sun, Yang-Kook .
MATERIALS TODAY, 2019, 23 :26-36
[7]   Extending the Battery Life Using an Al-Doped Li[Ni0.76Co0.09Mn0.15]O2 Cathode with Concentration Gradients for Lithium Ion Batteries [J].
Kim, Un-Hyuck ;
Myung, Seung-Taek ;
Yoon, Chong S. ;
Sun, Yang-Kook .
ACS ENERGY LETTERS, 2017, 2 (08) :1848-1854
[8]   Capacity Fade in Solid-State Batteries: Interphase Formation and Chemomechanical Processes in Nickel-Rich Layered Oxide Cathodes and Lithium Thiophosphate Solid Electrolytes [J].
Koerver, Raimund ;
Ayguen, Isabel ;
Leichtweiss, Thomas ;
Dietrich, Christian ;
Zhang, Wenbo ;
Binder, Jan O. ;
Hartmann, Pascal ;
Zeier, Wolfgang G. ;
Janek, Juergen .
CHEMISTRY OF MATERIALS, 2017, 29 (13) :5574-5582
[9]   Anisotropic Lattice Strain and Mechanical Degradation of High- and Low-Nickel NCM Cathode Materials for Li-Ion Batteries [J].
Kondrakov, Aleksandr O. ;
Schmidt, Alexander ;
Xu, Jin ;
Gesswein, Holger ;
Moenig, Reiner ;
Hartmann, Pascal ;
Sommer, Heino ;
Brezesinski, Torsten ;
Janek, Juergen .
JOURNAL OF PHYSICAL CHEMISTRY C, 2017, 121 (06) :3286-3294
[10]   Ti-Gradient Doping to Stabilize Layered Surface Structure for High Performance High-Ni Oxide Cathode of Li-Ion Battery [J].
Kong, Defei ;
Hu, Jiangtao ;
Chen, Zhefeng ;
Song, Kepeng ;
Li, Cheng ;
Weng, Mouyi ;
Li, Maofan ;
Wang, Rui ;
Liu, Tongchao ;
Liu, Jiajie ;
Zhang, Mingjian ;
Xiao, Yinguo ;
Pan, Feng .
ADVANCED ENERGY MATERIALS, 2019, 9 (41)